
Spankster: a Distributed Peer to Peer File Sharing System

6.033 Design Project 2

Kailas Narendran, Andrew Lamb, Alex MeVay
Saltzer/Clarke TR2

05/10/2001

Abstract

Spankster is a peer to peer file sharing protocol that is completely decentralized, and will scale to
millions of users. A deterministic chunking algorithm allows clients to locate the disparate pieces
of a file without relying on control messages. Controlled replication of files ensures file persis-
tence and availability, even when nodes fail and at times of large demand. Spankster uses public
key cryptography to ensure file integrity and authenticity, and to prevent unauthorized file

changes. Spankster builds on the Chord peer to peer lookup protocol1 to provide these additional
features.

1. Stoica, Ion; Morris, Robert; Karger, David; Kaashoek, M. Frans; Balakrishnan, Hari.Chord: A Scalable
Peer to Peer Lookup Service for Internet Applications. http://pdos.lcs.mit.edu/~kaashoek/chord.ps

h a
 per-
r noti-
ystem
es that
. All
enti-

e can

Nap-

r fail-

e file

eliver

.
ith a
lta-

illion

on-
k

et-
ts or
tive
egy to
files
Introduction

Overview
Spankster is a protocol for a peer to peer distributed file system. It allows any user to publis
file, and any other user to retrieve the file without relying on any central authority. Files only
sist for a finite amount of time before they are purged from the system, unless the publishe
fies the system regularly that the file should be maintained. Clients may enter and leave the s
at their convenience and can control the amount of their local network and storage resourc
they contribute to the system. Publishers are uniquely identified with a public/private key pair
files are signed with the private key and named using the public key of the publisher to auth
cate their source. Only someone with the private key corresponding to the public key on a fil
insert that file and renew its time to live.

Goals

• The primary goal of the Spankster system is to provide a file sharing service, similar to

ster1, except that there are no central servers, and therefore no central points of control o
ure.

• When a user retrieves a file from the Spankster system, the user should be sure that th
returned is the same file that was inserted by the publisher.

• When the demand for a file grows, the system should be able to dynamically adapt to d
the maximum possible performance.

• Spankster tries to make a reliable storage system out of unreliable and untrusted nodes
Spankster should be able to continue to serve files indefinitely if nodes fail sequentially w
reasonable amount of time separating failures. If 5% of the Spankster nodes failed simu
neously (a power failure hits California, for instance), there should be only a one in a m
chance that any particular file is lost.

• The system should scale to millions of users.

Assumptions
The primary goal of Spankster is to allow peer-to-peer file sharing without any centralized c
trol. In order to accomplish this goal, Spankster becomes vulnerable to some forms of attac
which are easily avoided using a centralized system.

A malicious user might launch a denial of service (DOS) attack by flooding the Spankster n
work with useless files. Preventing malicious flooding requires either restrictive per-user limi
an authority to decide which files are “good” and which files are “bad.” Both of these preventa
strategies go against the goal of providing a user-driven, decentralized system. Another strat
keep trash out of the system is to give individual users the ability to not participate in storing

1. http://www.napster.com
Spankster 1

ooper-
ordi-

ower
vent

ven in
ro. In
les by
pic

n. In
tains
ocate
pank-
files
key.
search-

e file-

 user.
b-like

out
. The

lows
nk-
de

f a file
they deem “trash.” However, because of Spankster’s reliability, most users would have to c
ate to remove any particular file from Spankster, and that cooperation would need to be co
nated from central location.

Spankster is primarily a protocol, not a program, and DOS attacks can also be initiated at l
levels within the protocol stack (such as TCP/IP). It is not feasible or advisable to try to pre
low level DOS attacks within Spankster or with most other end-to-end protocols.

Thus, the key assumption of Spankster is that the users cooperate. Cooperation is implicit e
the base Chord protocol, since the probability any one user stores his own file is virtually ze
any system based on Chord, a user does not help the availability or persistence of his own fi
joining the network, so any offer of services to the Spankster network is a purely philanthro
act.

Security and Naming of Documents

Spankster uses file naming for several tasks including authentication and garbage collectio
addition to the descriptive name of the file (dp2.txt, for example), a Spankster filename con
the public key of the author and the size of the file. The Spankster client uses the file size to l
particular chunks of a file that Spankster may have fragmented during an insert operation (S
ster locates files using a deterministic algorithm, described later). Spankster authenticates
using public-key cryptography. Every chunk of every file is signed with the author’s private
Thus, a client that receives a file may check that the file indeed matches the name he was
ing for by checking that the file contents verify with the key in the filename. With this system
working correctly, the user must only trust that his rendezvous with the author to receive th
name was authentic.

Figure 1: Spankster filenames

Spankster filenames are long, ugly creatures, and are best hidden in a layer invisible to the
The envisioned Spankster interface is web-like, and Spankster names are embedded in we
links. We assume that users will hear about files much the same way most people hear ab
webpages, by someone else sending them the link, or through some type of search engine
parts of a Spankster filename are shown in Figure 1.

Deterministic File Chunking and Replication

Purpose
Breaking a file into multiple chunks and then distributing each chunk among multiple hosts al
Spankster to provide high availability and high performance. Splitting files into chunks (chu
ing), by itself will increase availability while also increasing the likelihood of file loss. To provi
high reliability, Spankster replicates each of chunk among multiple hosts and is thus able to
achieve high fault tolerance. To increase performance, clients can request multiple chunks o

filename K Public, Publisher filesize

human readable
file name

Public key
of the

Publisher

size of the file
(for chunking purposes)
Spankster 2

same
r con-

as of
inistic
to deter-
ts}
ame
Chord

e for
he
nd (R-
ding to
tes in
h
e, Fig-
at once. The client could therefore (in theory) receive the file’s constituent data chunks at the
time, at his own available bandwidth, even if the chunks are stored on computer with slowe
nections.

Overview
Figure 2: Spankster chunk names and contents

Each file inserted into the Spankster System is broken up into small, N KB chunks. R replic
the chunks are created. Spankster names each chunk according to an established, determ
scheme based on the main Spankster filename. The computed chunk name is then hashed
mine an associated Chord ID. The publisher signs {filename, chunk number, chunk conten
with his private key, and the signature is included with each chunk. By simply knowing the n
of a Spankster file, the names of the file’s constituent chunks can be recreated, and thus the
IDs of the chunks can be determined.

Spankster names file chunks by appending “file coordinates” to the original Spankster nam
the file. File coordinates consist of the sequential number of the chunk within the file, and t
“server coodinates” of that chunk. Server coordinates are a string of numbers between 0 a
1), which are used to make chunk names unique, and thus stored on different servers accor
the Chord protocol. The following sections describe the generation and use of file coordina
more detail. The Chord ID for the chunk is computed by hashing the chunk’s new name wit
SHA-1. Figure 2 shows how a chunk name is constructed, and shows a generic chunk nam
ure 3 shows an example chunk name.

filename KPublic, Publisher filesize

Chunk #(chunk coordinate) server coordinate

The sequential
location of this

chunk in the file

coordinate of chunk

Chunk contents
stored by each

node

Signature of {filename,
Public Key, filesize,
chunk data and chunk #}
with publisher’s private
key

Chunk Signature

Chunk Data

Chunk Name
The chunk’s name and
file coordinates

N sequential KiloBytes
of the file

Chunk TTL
The amount of time that
a chunk will be stored
before it is deleted
Spankster 3

ble for

fect
 on

hat a
s
ber
ead
 be

 effect
t the
 file).
al is

 lost if

r the
ce on
e

Figure 3: Example chunk name

Choosing N and R for fault tolerance and download performance
The calculations below suggest that choosing the values N = 100 KB and R = 6 is reasona
the Internet of today.

Both N, the size of eah file chunk, and R, the number of replicas of each chunk, critically af
the performance of the Spankster system. The optimum values for each parameter depend
Spankster’s environment and design requirements.

Most files are unusable if a random 100 KB is missing from them. It is therefore assumed t
file in the Spankster system is totally lost whenever a single chunk is lost. The fewer chunk
(larger N) a file is split into the lower the probability of losing a file. However, greater the num
of chunks (smaller N) a file is split into, the more evenly the load for retrieving the file is spr
over all of the Spankster nodes. By choosing a value for N, performance and reliability can
traded off agianst each other.

R is the number of times that a particular chunk is replicated. The greater R is, the less the
of random lost nodes (because R nodes must fail simultaneously for a chunk to be lost) bu
greater the storage resources that are demanded of clients (by a factor of R over the initial
The Spankster goals provide a starting point for choosing N and R. Spankster’s reliability go
to be able to lose a random 5% of its nodes, and not lose any files, and a file is considered
any one of its chunks is lost.

If a fraction L of the nodes are lost, the probablility that any chunk is lost is LR. The probability
that all chunks survive is

where S is the size of the file, so that S/N is the number of chunks a file is broken into. As
expected, the smaller N is, the greater the probability of failure, and the greater R is, the lowe
probability of failure. Since N directly affects the download speed of the system and disk spa
personal computers is growing rapidly, N is chosen for good download performance, and th
above equation constrains R.

dp2.txt K Public, Publisher 3453728 3 2

Chunk number 3File size

Publisher’s public
key

Spankster name

dp2.txt K Public, Publisher 3453728 3 2

First tier server number 2
Publisher’s

public
key

5

Second tier
server number 5

First tier
(initial)

chunk name

Second tier
chunk name

1 L
R

–()

S
N
---- 

 

P allChunksSurvive()=
Spankster 4

s con-
he
ing for
take
ble esti-
ems

.

sts, a
ec-
 Nap-
ave
all
 be set

ients
ork

.

unk
e, and
e

he stor-

s at
ssive
nk is
erted
lishes
nc-

 node
 cop-

oca-
ier”
ver-
pies in
ly until
mis-

nodes
100 KB was chosen for a value of N because it is an easily digestible size for most computer
nected to the internet today. At present, we assume that the slowest possible computer in t
Spankster system is a home user connected over a 56.6 Kbit/sec modem. At this rate, allow
packed headers and noisy transmission lines and assuming full use of bandwidth, it would
around 20-30 seconds (14.13 seconds if at full speed; 30 seconds might be a more reasona
mate) for any particular chunk to be transmitted. As broadband connections (eg cable mod
and DSL lines) continue to proliferate, the time to transmit a 100 KB file will continue to
decrease. Using a broadband connection, the transmittion time is on the order of 1 second

Since a client can request a file’s chunks simultaniously from multiple different Spankster ho
hypothetical client with unlimited bandwidth could download a file of any size in about 30 s
onds or less. To determine R, we need an estimate for a typical filesize. If the popularity of
ster is any indication, much of the traffic on Spankster will consist of MP3 music files, which h
a typical file size of about 5 MB. By setting N = 100, S=5,000,000 and and P(fileLost)=1-P(
chunks survive) = 1/1,000,000 = 0.000001 R is constrained to be at least 5.15, so R should
to 6 to achieve Spankster’s reliability goal. Even this is conservative, because Spankster cl
will make intersession disk storage possible (described in the section about joining the netw
below), which will prevent most crashes from causing a node to permanently lose any data

Protocol support of Replication and Chunking, and Load Sharing

File coordinates
Spankster manages file replication and chunking by appending the file coordinates (the ch
number and server coordinates) of each chunk to the end of the original Spankster filenam
inserting the chunk into the system under the new name. This allows Spankster to locate th
chunk replicas on different servers (since the hash to Chord IDs is consistent, and spreads t
age load evenly), at locations that can be determined with only the main Spankster name.
For the example shown in Figure 4, chunk 8 of file “foo” might be found at foo.8.1,or perhap
foo.8.4.3.5. The first number after the filename indicates the chunk number, and the succe
numbers indicate the host serving the file. When a file is inserted into Spankster, each chu
inserted R times, where R is the replication number. Chunk foo.8, for example, would be ins
as foo.8.0, foo.8.1, ..., foo.8.(R-1) The first server coordinate is always present and accomp
replication for fault tolerance. Additional coordinates add additional replication for load bala
ing, as the next section illustrates.

File coordinates and high network traffic
If any of the Spankster nodes serving files becomes overloaded with traffic, the overloaded
makes extra copies of that chunk available, and then implicitly redirects requests to the new
ies. A server hosting foo.8.3, for example, it would reinsert the file another R times at new l
tions foo.8.3.0, foo.8.3.1, ..., foo.8.3.(R-1), and begin redirecting all traffic to this addtional “t
of new copies. If any of the nodes at which the copies were inserted themselves become o
loaded, the overloaded node would add an additional field to the name, and reinsert the co
the same manner, with filenames such as foo.8.3.5.1. This process can continue indefinite
all the network traffic is handled. These names logically suggest a tree, but that analogy is
leading. Since the leaf addresses are deterministic, it is not necessary to traverse any branch
Spankster 5

es, it
ati-

field

lping
n still

anding
nt

r
ond,
a

would

erver
the
to get to a leaf. Indeed, when a node wishes to redirect a client node to another tier of copi
has to reply only with a “No” message (the implicit redirect packet), and the client will autom
cally know where to look for the additonal copies of the chunk, simply by appending a new
to the previous file coordinate.

Figure 4: How publishers and clients locate chunks

File coordinates have two main advantages. First, implicit redirect packets are very short, he
an already overloaded node. Second, even if a leaf does not reply, the requesting client ca
determine where to locate chunks at lower tier nodes.

Retrieving documents
Consider the following example of executing the command,get(“foo”) : To retrieve chunk
foo.8, (one of the steps in the command) the originating computer picks a random number
between 0 and R-1, say 4, and requests that copy, foo.8.4 from the IP address returned by h
Chord the hashed version of foo.8.4. If the initial request times out, the client picks a differe
number at random, and requests that chunk copy number(for example foo.8.2).

The client will continue requesting the same chunk with different coodinates until one of fou
things happens. First, theget might succeed, and the client retrieves the desired chunk. Sec
the client receives an explicit redirect. Third, the client receives an implicit redirect packet (
“No”). Fourth, the client does not receive a reply from any of the possible hosts.

In the second case, the client searches at the address specified by the explicit redirect. This
be necessary if the original host had insufficient storage space for the chunk.

In the third case, the client chooses another number at random, appends it to the current s
coordinate of the host who sent the “No” and starts looking for the chunk on the next “tier” in

same manner as the original search.1

File "foo"

(...)

chunk 1

chunk 2

chunk 3

chunk 4

chunk 5

chunk 6

chunk 7

chunk 8

chunk "foo.8"

"foo.8.0"

"foo.8.2"

"foo.8.3"

"foo.8.4"

"foo.8.5"

"foo.8.1"

SHA-1 Chord

IP address at which
to locate or store foo.8.1

IP address at which
to locate or store foo.8.2

IP address at which
to locate or store foo.8.3

IP address at which
to locate or store foo.8.4

IP address at which
to locate or store foo.8.5

IP address at which
to locate or store foo.8.0
Spankster 6

ent, or

le on
wn,

und,
file
 time

gnature
then-

oca-

on
pular
nly a

me
ume
e fol-
irect
n the
e dura-
now

illion
 user
e sys-

of

eiv-
e

The fourth outcome, no replies, is not as bad as it seems. It means either the file is not pres
all nodes hosting the first tier of the file are receiving too much traffic even to send enough
implicit redirects. The client will assume the latter, and that the nodes have reinserted the fi
lower tiers. The client will now by default search for the chunk at locations in the one tier do
foo.8.X1.X2, where X1 and X2 are random numbers between 0 and R-1. If the file is not fo
this search will continue on lower tiers (to foo.6.X1.X2.X3.X4..., etc.) until the client finds the
or decides to give up, either by exceeding a maximum search depth, or a maximum search
specified by the user.

If the any file chunk is not found, theget command returns an error. Otherwise, all of the file
data is extracted and reassembled from the chunks. During this process, the private key si
of each chunk is verified using the public key in the filename, thus ensuring that the file is au
tic. If a chunk does not verify, the client requests a new copy of the chunk from a different l
tion.

Traffic Loading Analysis

Replication to meet changing demand
Theget protocol above functions efficiently even with low-bandwidth hosts. Since the traffic
each tier is only about 1/R times what the traffic would have been on the redirecting node, po
files may be replicated to reduce the data loading at all nodes to an acceptable level with o
small number (logarithmically growing) of redirects. The limiting factor in download perfor-
mance is not data loading but sending implicit redirects.

Justification
Some estimates will support the claim that the get protocol works with slow hosts: We assu
that since this is a file-sharing system, users will only download any file once. Also, we ass
that a file will be popular over the course of a week (smaller times here are conservative in th
lowing calculations), as news of the file spreads. Assume, conservatively, that an implicit red
packet (the “No” message) is 1000 bits, including all headers and transmission overhead. I
worst case, all 6 nodes on the first tier are connected by 56.6kbit/sec modems for the whol
tion of the analysis, and traffic is so high that they send only implicit redirects. We assume
that traffic from other files in negligible and that the request load is constant. Each second,
R*56.6k/1000=339 file requests can be processed. Over the course of a week, this is 200 m
file requests. Some of the assumptions above are not so conservative (constant load, each
downloads a file once), but even so, these calculations show that even in the worst case, th
tem is still capable of serving millions of users in a reasonable scenario.

1. There is another possible way to proceed after receiving an implicit redirect. Instead
searching the next tier of hosts (of the form foo.6.X.X), a client could keep trying the
other nodes on the first tier (of the form foo.6.X). However, if requests load balance
evenly across all nodes on a tier, as they should, nodes on a lower tier should be rec
ing only 1/R as much traffic as their parents, and hence are a better place to look for th
desired file chunk.
Spankster 7

kster.
l, so
eter-
host)
r’s cli-
 with
 the
his

ped
r to

round,

y

ill
e aver-

nk

unk
Inserting files

Insertion
The publisher of a file is solely responsible for insertion and deletion of her files from Span
Chunking is done by the client software of the publisher according to the Spankster protoco
all Spankster nodes store chunks rather than whole files. The publisher’s Spankster client d
mines the IP address of the host that should store any particular chunk (that chunk’s storage
by performing a Chord lookup on the hashed chunk name as described above. The publishe
ent then sends a timestamped “Insert” message, signed with the author’s private key along
the chunk contents to the chunk storage host. The receiving host can use the signature on
“Insert” packet and the public key in the chunk name to verify that the author is submitting t
file. If validation fails, an “Error” is returned to the publisher and the chunk is discarded.

Time to live
Each chunk name contains a time to live (TTL). When a host receives a file, it is time-stam
locally and should be deleted after the specified time. It is the responsibility of the publishe
issue a “KeepAlive” message to all nodes containing chunks of his file. If the individual that
inserted a particular file deems it unnecessary or obsolete, there is no need to keep the file a
so chunks with expired TTLs are deleted.

To ensure that infinite TTLs are not set by lazy authors, the maximum time to live allowed b

Spankster is four months. The average software programmer writes about 101 bug free lines of
code per day. A “large program” is defined as having more than 50,000 lines of code. We w
assume that most software on our network is on average about 25,000 lines of code and th

age size of a medium size team is 10 programmers2. If they were to rewrite half of the software

Table 1: Packet types

Packet Type Description Data

AddChunk Receiving node stores the chunk Chunk Name, Chunk Data, Chu
Signature, Time To Live

GetChunk Request for a particular chunk Chunk Name, Return Address

Receive-
Chunk

Response containing a requested chunk Chunk Name, Chunk Data, Ch
Signature

No (implicit
redirect)

Used to implicitly redirect traffic to next
tier of nodes

(None)

Explicit
Redirect

Used to explicitly refer a GetChunk
request to another Spankster host.

Chunk Name, New Server Address

KeepAlive Resets the TTL timer for the specified
Chunk

Chunk Name, timestamp, signa-
ture

1. http://www.vni.com/books/press/sales_CNL00.html
Spankster 8

iod is a

L at
end
rld

pank-
 the

unks
te all
 that
ating
s with
rts the

ooking

are of
s
 node
nks it

r is able
ace is

o store
 new
se
n.

o host,
odes
, all of
is man-
d file).
between releases, the time period between releases would be about 125 days. This time per
very rough prediction of system usage.

When chunk of a popular file is copied to the next “tier” of Spankster nodes, the maximum TT
the next “tier” is only 48 hours. After 48 hours, if the redirecting node is still hosed it must s
KeepAlive messages to the next “tier.” The time limit of 48 hours gives users around the wo
sufficient time to get a file the day it is released.

Because each chunk has a time to live which it is the publisher’s responsibility to update, S
ster does not provide an explicit delete operation. To delete a file, the publisher merely lets
TTL expire.

File updates
To preserve file consistency, Spankster does not allow file updates. Keeping all of a file’s ch
consistent throughout an update operation is very hard. The publisher would have to invalida
chunks, ensure that they all were invalidated, and then update them. With unreliable nodes
can effectively enter and leave the system randomly, it is not clear that this process for upd
file contents would work in all cases. Since Spankster users get filenames from a rendezvou
the publisher anyways(eg a web page), to update a file’s contents the publisher simply inse
file into Spankster under a different name and changes the pointer he gives out to people l
for his file.

Entering and Leaving the Network

A node joins the system
When a node joins the network, it must alert other nodes of its presence and take over its sh
files. Spankster calls thejoin() function of the Chord system, which updates and propagate
the necessary Chord address information througout the Chord system. The new Spankster
then contacts its own Chord successor, and by comparing Chord IDs, determines which chu
should take over from its successor.

The next step depends on the user settings of the Spankster program. In Spankster, the use
to determine how much disk space to allow Spankster to use, and also whether that disk sp
made available again after the program closes. If the user has chosen to allow Spankster t
files on the disk between sessions, there is a good probability that many of the files that the
node has been alotted from its successor are already on its disk. This locality occurs becau
chunk and host IDs do not change, and thus chunk to host assignments do not change ofte

The recently joined node compares its files cached on disk with those it has been assigned t
and receives any new files. This disk caching significantly saves transfer overhead when n
join and leave the system. If the user has not allowed Spankster any intersession disk space
the relevant chunks must be transferred to the new node from its successor. The disk cache
aged by an ordinary chaching policy, such as LRU (replacement of the Least Recently Use

2. http://www.hpl.hp.com/techreports/91/HPL-91-170.html
Spankster 9

orm a
it is
ilure
the
e that

nkster
urrent
space

unk.
ing
 has
unk it

ter is
passes
t have

-
main

y no
ial of
f cen-
uses
chnol-

tral
Periodically, and before any chunks are removed from the cache, a Spankster node will perf
“GetChunk” on the first “tier” of nodes for each chunk about to be purged, and each chunk
hosting. If any of the “GetChunk” requests return an error, the node will assume that some fa
has occurred and the chunk at that server coordinate has been lost. The node will reinsert
chunk at the appropriate coordinate using its own copy. This self-healing process will ensur
Spankster does not lose files over time.

Joins and inserts with limited resources
When a node joins the network, it might not have enough space to store the chunks that Spa
allocates to it. In this case, for each of the chunks it cannot store, it saves a pointer to the c
server of the chunk, and the file remains with the successor. If a node does not have enough
to store the requisite pointers, it is not allowed to join the network.

If a node runs out of space, but is asked to store a chunk, it remains responsible for that ch
The node will proceed in a manner similar to what it would do if one of its chunks were receiv
excessive traffic. The node will insert the chunk, say foo.8.3, at the first lower-tier node that
space to store it (foo.8.3.0, or foo.8.4.5.2, for example). When it receives requests for that ch
responds with an explicit redirect message which gives clients the correct address for the
requested chunk.

Leaving the network
Spankster’s shutdown/leave mechanism is very similar to its join procedure. When Spanks
shutdown properly (i.e., not by a system crash or network disconnect), the Spankster node
on all the chunks it had been storing to its successor, (except for any that the successor migh
cached on disk). The node then calls the Chordleave() command, which makes the appropri
ate updates to the address lists within the Chord network. The chunks left on disk either re
for the next session, or are deleted to free up disk space, according to user preference.

Conclusion

Spankster sets for itself the ambitious goal of providing distributed file sharing with absolutel
central control. To accomplish this goal, we make the dubious assumption that malicious den
service attacks will not occur. Any sort of trash supression scheme must involve some sort o
tral control, which explains the paucity of truly peer-to-peer networking protocols. Spankster
many novel approaches such as deterministic chunking and distributed hashing. As these te
ogies are further refined in the coming years, hopefully systems like Spankster with no cen
control will continue to proliferate.
Spankster 10

	Spankster: a Distributed Peer to Peer File Sharing System
	6.033 Design Project 2
	Abstract
	Introduction
	Overview
	Goals
	Assumptions

	Security and Naming of Documents
	Figure 1: Spankster filenames

	Deterministic File Chunking and Replication
	Purpose
	Overview
	Figure 2: Spankster chunk names and contents
	Figure 3: Example chunk name

	Choosing N and R for fault tolerance and download performance

	Protocol support of Replication and Chunking, and Load Sharing
	File coordinates
	File coordinates and high network traffic
	Figure 4: How publishers and clients locate chunks

	Retrieving documents

	Traffic Loading Analysis
	Replication to meet changing demand
	Justification

	Inserting files
	Insertion
	Table 1: Packet types

	Time to live
	File updates

	Entering and Leaving the Network
	A node joins the system
	Joins and inserts with limited resources
	Leaving the network

	Conclusion

