
Linear Analysis and Optimization
of Stream Programs

Masterworks Presentation
Andrew A. Lamb

4/30/2003
Professor Saman Amarasinghe

MIT Laboratory for Computer Science

Andrew A. Lamb 4/28/2003 2

Motivation

n Digital devices, massive computation pervade
modern life (cell phones, MP3, HDTV, etc.)

n Devices complex, software more complicated
n Performance constraints (real time, power

consumption) dictate high level of
optimization

n Best performance assembly (50% cell
phone code is written in assembly)

n Assembly is (very) hard to reuse
n Automatic optimization is critical

Andrew A. Lamb 4/28/2003 3

Outline

n Motivation

n StreamIt

n Linear Dataflow Analysis

n Performance Optimizations

n Results

Andrew A. Lamb 4/28/2003 4

The StreamIt Language

n Goals:
n High performance
n Improved programmer productivity (modularity)

n Contributions:
n Structured model of streams
n Compiler buffer management
n Automated scheduling (Michal Karczmarek)
n Target complex architecture (Mike Gordon)
n Domain specific optimizations (Andrew Lamb)n Domain specific optimizations (Andrew Lamb)

Andrew A. Lamb 4/28/2003 5

Programs in StreamIt

n Traditional: stream programs are graphs
n No simple textual representation
n Difficult to analyze and optimize

n Insight: stream programs have structure

unstructured structured

Andrew A. Lamb 4/28/2003 6

Why Structured Streams?

n Compared to structured control flow

n PRO: more robust, more analyzable

n CON: “restricted” style of programming

GOTO statements if / else / for statements

Andrew A. Lamb 4/28/2003 7

n Basic programmable unit:
n Filter

n Hierarchical structures:
n Pipeline

n SplitJoin

n Feedback Loop

Structured Streams

Andrew A. Lamb 4/28/2003 8

Representing Filters

n Autonomous unit of computation

n No access to global resources
n One input, one output
n Communicates through FIFO channels

n pop(), peek(index)
n push(value)

n “Firing” is the atomic execution step
n A firing’s peek, pop, push rates must be constant
n Code within filter is general purpose – like C

Andrew A. Lamb 4/28/2003 9

Outline

n Motivation

n StreamIt

n Linear Dataflow Analysis

n Performance Optimizations

n Results

Andrew A. Lamb 4/28/2003 10

What is a Linear Filter?

n Generic filters generate outputs (possibly)
based on their inputs

n Linear filters: standard sense of linearity

n outputs (yj) are weighted sums of the inputs (xi)

(possibly plus a constant)

b constant
ai constant for all i
e is the number of inputs

bxay i

e

i
i += ∑

−

=

1

0

r

?

Andrew A. Lamb 4/28/2003 11

Linearity and Matricies

n Represent multiple inputs, multiple outputs
with matrix multiply

n We treat inputs (xi) and outputs (yj) as
vectors of values (x, and y respectively)

n Filter representation:
n Matrix of weights A
n Vector of constants b
n peek, pop, push rates

n A filter firing computes:

y = xA + b

Andrew A. Lamb 4/28/2003 12

n Goal: convert the filter’s imperative code into
an equivalent linear node

y = xA + b

n Technique: “Linear Dataflow Analysis”
n Resembles standard constant propagation
n “Linear form” is a vector and a constant
n Keep mapping from each expr. to linear form

n Extract linear form for each value pushed

Extracting Linear Filters

expr b
a

a

e

+
















−1

0

M

Andrew A. Lamb 4/28/2003 13

Outline

n Motivation

n StreamIt

n Linear Dataflow Analysis

n Performance Optimizations

n Results

Andrew A. Lamb 4/28/2003 14

1. Combining Linear Filters
n Pipelines and splitjoins containing only linear

filters can be collapsed into a single node
n Example: pipeline with peek(B)=pop(B)

[A] [B] [C]

x2

y = x2 B

= x1 A
y = x1 A’ B’ = x1 C

x1 y

C = A’ B’
where A’ and B’ have been
scaled and duplicated so
that the dimensions match.

x1 x2 y

Andrew A. Lamb 4/28/2003 15

2. Frequency Replacement
n First, identify linear nodes with FIR filters

from discrete time linear systems

λ=(A,b,3,M,N)

h1[n]

λ=(A,b,peek,pop,push)

[]00 L=b

Linear Node

DT System

hN-1[n]

M M
switch

decimator

M
















=

12
21
12

…
…
…

A

decimator

M

Andrew A. Lamb 4/28/2003 16

3. Automatic Selection
n Applying optimizations blindly is not good
n Combination example:
















=

3
2
1

A

λ=(A,b,3,1,1)

[]654=A

λ=(A,b,1,1,3)
















=

181512
12108
654

A

λ=(A,b,3,1,3)

originally

2 mults
output

3 mults
output

after “optimization”

Andrew A. Lamb 4/28/2003 17

Outline

n Motivation

n StreamIt

n Linear Dataflow Analysis

n Performance Optimizations

n Results

Andrew A. Lamb 4/28/2003 18

Fmul Reduction

-40%

-20%

0%

20%

40%

60%

80%

100%

FIR

Rate
Con

ve
rt

Ta
rge

tD
ete

ct

FM
Rad

io
Rad

ar

Fil
ter

Ban
k

Vo
co

de
r

Ove
rsa

mple
DTo

A

Benchmark

M
u

lt
ip

lic
at

io
n

s
R

em
o

ve
d

 (
%

)

freq

linear

autosel

Andrew A. Lamb 4/28/2003 19

Execution Speedup

-400%

-200%

0%

200%

400%

600%

800%

1000%

FIR

Rate
Con

ve
rt

Ta
rge

tD
ete

ct

FM
Rad

io
Rad

ar

Fil
ter

Ban
k

Vo
co

de
r

Ove
rsa

mple
DTo

A

Benchmark

S
p

ee
d

u
p

 (
%

)

freq

linear

autosel

4.
53

%

Andrew A. Lamb 4/28/2003 20

Conclusion
n StreamIt is a new language for high

performance DSP applications
n Personal research contributions:

n Dataflow analysis determines a linear node
that represents input/output relationship

n Combination and optimization using
linear nodes

n Average performance speedup of 450%

Using StreamIt and domain specific optimizations,
modularity does not sacrifice performance.

