
Linear Analysis and Optimization 
of Stream Programs

Masterworks Presentation
Andrew A. Lamb

4/30/2003
Professor Saman Amarasinghe

MIT Laboratory for Computer Science



Andrew A. Lamb 4/28/2003 2

Motivation

n Digital devices, massive computation pervade 
modern life (cell phones, MP3, HDTV, etc.)

n Devices complex, software more complicated 
n Performance constraints (real time, power 

consumption) dictate high level of 
optimization

n Best performance assembly (50% cell 
phone code is written in assembly)

n Assembly is (very) hard to reuse
n Automatic optimization is critical
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The StreamIt Language

n Goals:
n High performance
n Improved programmer productivity (modularity)

n Contributions:
n Structured model of streams
n Compiler buffer management
n Automated scheduling (Michal Karczmarek)
n Target complex architecture (Mike Gordon)
n Domain specific optimizations (Andrew Lamb)n Domain specific optimizations (Andrew Lamb)
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Programs in StreamIt

n Traditional: stream programs are graphs
n No simple textual representation 
n Difficult to analyze and optimize

n Insight: stream programs have structure

unstructured structured
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Why Structured Streams?

n Compared to structured control flow

n PRO: more robust, more analyzable

n CON: “restricted” style of programming

GOTO statements if / else / for statements
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n Basic programmable unit: 
n Filter

n Hierarchical structures:
n Pipeline

n SplitJoin

n Feedback Loop

Structured Streams
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Representing Filters

n Autonomous unit of computation

n No access to global resources
n One input, one output
n Communicates through FIFO channels

n pop(), peek(index)
n push(value)

n “Firing” is the atomic execution step
n A firing’s peek, pop, push rates must be constant
n Code within filter is general purpose – like C
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What is a Linear Filter?

n Generic filters generate outputs (possibly) 
based on their inputs

n Linear filters: standard sense of linearity

n outputs (yj) are weighted sums of the inputs (xi) 

(possibly plus a constant)
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Linearity and Matricies

n Represent multiple inputs, multiple outputs 
with matrix multiply 

n We treat inputs (xi) and outputs (yj) as 
vectors of values (x, and y respectively)

n Filter representation:
n Matrix of weights A
n Vector of constants b
n peek, pop, push rates

n A filter firing computes:

y = xA + b
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n Goal: convert the filter’s imperative code into 
an equivalent linear node

y = xA + b

n Technique:  “Linear Dataflow Analysis”
n Resembles standard constant propagation
n “Linear form” is a vector and a constant
n Keep mapping from each expr. to linear form

n Extract linear form for each value pushed

Extracting Linear Filters
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1. Combining Linear Filters
n Pipelines and splitjoins containing only linear 

filters can be collapsed into a single node
n Example:  pipeline with peek(B)=pop(B)

[A] [B] [C]

x2

y = x2 B

= x1 A
y = x1 A’ B’ = x1 C

x1 y

C = A’ B’
where A’ and B’ have been 
scaled and duplicated so 
that the dimensions match.

x1 x2 y
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2. Frequency Replacement
n First, identify linear nodes with FIR filters 

from discrete time linear systems

λ=(A,b,3,M,N)
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3. Automatic Selection
n Applying optimizations blindly is not good
n Combination example:
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Fmul Reduction
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Execution Speedup
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Conclusion
n StreamIt is a new language for high 

performance DSP applications
n Personal research contributions:

n Dataflow analysis determines a linear node 
that represents input/output relationship

n Combination and optimization using 
linear nodes

n Average performance speedup of 450%

Using StreamIt and domain specific optimizations, 
modularity does not sacrifice performance.


