
Linear Analysis and Optimization of Stream Programs

Andrew A. Lamb, William Thies and Saman Amarasinghe

{aalamb, thies, saman}@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

ABSTRACT
As DSP programming is becoming more complex, there is
an increasing need for high-level abstractions that can be
efficiently compiled. Toward this end, we present a set of ag-
gressive optimizations that target linear sections of a stream
program. Our input language is StreamIt, which represents
programs as a hierarchical graph of autonomous filters. A
filter is linear if each of its outputs can be represented as an
affine combination of its inputs. Linear filters are common in
DSP applications; examples include FIR filters, expanders,
compressors, FFTs and DCTs.
We present a linear extraction analysis that automati-

cally detects linear filters based on the C-like code in their
work function. Once linear filters are identified, we show
how neighboring nodes can be collapsed into a single linear
representation, thereby eliminating many redundant com-
putations. Also, we describe a method for automatically
translating linear nodes into the frequency domain, thereby
yielding algorithmic savings for convolutional filters.
We have completed a fully-automatic implementation of

the above techniques as part of the StreamIt compiler, and
we demonstrate performance improvements that average 400%
over our benchmark applications.

1. INTRODUCTION
Digital computation is becoming an increasingly ubiqui-

tous element of modern life. Everything from cell phones to
GPS systems to satellite radios require increasingly sophis-
ticated algorithms. Optimization is especially important for
this domain, as embedded devices often have high perfor-
mance requirements and tight resource constraints. Even
with the best available C compilers for DSP chips, program-
mers still turn to assembly code to implement critical parts
of embedded applications. This process is time-consuming,
error-prone and costly, and must be repeated for each gen-
eration of the target architecture. As algorithms and appli-
cations continue to grow in complexity, these factors will be-
come unmanageable. There is a pressing need for high-level
DSP abstractions that a compiler can consistently reduce to
efficient low-level code.
In this paper, we demonstrate that a domain-specific stream

language can enable novel high-level DSP optimizations that
would otherwise be intractable in a general-purpose lan-
guage. Our source language is StreamIt, which is specifi-
cally designed for high-performance signal processing appli-
cations [9, 20]; our analysis focuses on filters that are linear.
StreamIt is distinguished from a general purpose language in
that it makes explicit the large-scale parallelism and regular

communication patterns that are characteristic of stream-
ing programs. By analyzing the primitive building block in
StreamIt–the filter–our analysis can detect large portions of
the application that produce outputs as a linear combination
of the inputs; we can exploit this linearity for a number of
large-scale optimizations. Though each filter is programmed
using imperative C-like code, the separation of filters into
autonomous units of the stream graph enables our analysis
to be far more effective and efficient than it could be on an
equivalent implementation in C alone.
This paper makes the following contributions:

• A linear dataflow analysis that can extract a linear
transfer function from the imperative code within a
StreamIt filter.

• Combination rules for collapsing neighboring linear nodes
into a single linear representation.

• An automated procedure for translating a stream com-
putation into the frequency domain in order to opti-
mize computationally intensive linear nodes.

• An implementation of the above techniques in the StreamIt
compiler that automatically improves performance by
a factor of five on average and by a factor of 6.5 in the
best case.

In the rest of this section, we give a motivating exam-
ple and background information on StreamIt. Then we
present our linear representation (Section 2) and our sup-
porting dataflow analysis (Section 3). Next we describe the
combination of linear filters (Section 4) and the translation
to the frequency domain (Section 5) before giving results
(Section 6), related work (Section 7), and conclusions (Sec-
tion 8).

1.1 Motivating Example
To illustrate the program transformations that our tech-

nique is designed to automate, consider a sequence of finite
impulse response (FIR) filters as shown in Figure 2. The
imperative C style code that implements this simple DSP
application is also shown. The program largely defies many
standard compiler analysis and optimization techniques be-
cause of its use of circular buffers and the muddled relation-
ship between data, buffer and the output.
Figure 3 shows the same filtering process implemented in

StreamIt. The StreamIt version is more abstract than the
C version. It indicates the communication pattern between
filters; it shows the structure of the original block diagram;
and it leaves the complexities of buffer management and
scheduling to the compiler.

1

FIR FIR
weights1

buffer

weights2

Figure 1: Block diagram of two FIR filters.

/* perform N-element FIR filter with weights and data */
float filter(float* weights, float* data, int pos, int N) {

int i;
float sum = 0;

/* perform weighted sum, starting at index pos */
for (i=0; i<N; i++, pos++) {

sum += weights[i] * data[pos];
pos = (pos+1)%N;

}
return sum;

}

void main() {
int i;
float data[N]; /* input data buffer */
float buffer[N]; /* inter-filter buffer */

for (i=0; i<N; i++) { /* initialize the input data buffer */
data[i] = get_next_input();

}

for (i=0; i<N; i++) { /* initialize inter-filter buffer */
buffer[i] = filter(weights1, data, i, N);
data[i] = get_next_input();

}

i = 0;
while(true) {

/* generate next output item */
push_output(filter(weights2, buffer, i, N));
/* generate the next element in the inter-filter buffer */
buffer[i] = filter(weights1, data, i, N);
/* get next data item */
data[i] = get_next_input();
/* update current start of buffer */
i = (i+1)%N;

}
}

Figure 2: Two consecutive FIR filters in C. Channels
are represented as circular buffers, and the schedul-
ing is done by hand.

Two optimized versions of the FIR program are shown in
Figures 4 and 5. In Figure 4, the programmer has combined
the weights arrays from the two filters into a single, equiv-
alent array. This reduces the number of multiply operations
by a factor of two. In Figure 5, the programmer has done
the filtering in the frequency domain, using the FFT and
IFFT to translate between time and frequency. Computa-
tionally intensive filters and streams are more efficient when
done in frequency instead of time.
Our linear analysis can automatically derive both of the

implementations in Figures 4 and 5, starting with the code in
Figure 3. These optimizations free the programmer from the
burden of combining and optimizing linear filters by hand.
Instead, the programmer can design modular filters at the
natural granularity for the algorithm in question, relying on
the compiler to do the analysis and combination.

1.2 StreamIt
StreamIt is a language and compiler for high-performance

signal processing [8, 9, 20]. In a streaming application, each
data item is in the system for only a small amount of time,
as opposed to scientific applications where the data set is
used extensively over the entire execution. Also, stream
programs have abundant parallelism and regular commu-
nication patterns. The StreamIt language aims to expose

float->float pipeline TwoPipe {
add FIRFilter(weights1);
add FIRFilter(weights2);

}

float->float filter FIRFilter(float[N] weights) {
work push 1 pop 1 peek N {

float sum = 0;
for (int i=0; i<N; i++) {

sum += weights[i] * peek(i);
}
push(sum);
pop();

}

Figure 3: Two consecutive FIR filters in StreamIt.
Buffer management and scheduling are handled by
the compiler.

float->float filter CollapsedTwoPipe() {
float[N] combined_weights;

init { /* calculate combined_weights as
combination of weights1 and weights2 */ }

work push 1 pop 1 peek N {
float sum = 0;
for (int i=0; i<N; i++) {

sum += combined_weights[i]*peek(i);
}

push(sum);
pop();

}
}

Figure 4: Combined version of the two FIR filters.
Since each FIR filter is linear, the weights can be
combined into a single combined weights array.

float->float pipeline FreqTwoPipe(int L) {
float[N] combined_weights = ... ; // calc. combined weights
complex[N] H = fft(combined_weights); // take FFT of weights
add FFT(N+L); // add FFT stage to stream
add ElementMultiply(H); // add multiplication by H
add IFFT(N+L); // add inverse FFT

}

Figure 5: Combined version of two FIR filters in the
frequency domain.

these properties to the compiler while maintaining a high
level of abstraction for the programmer.
StreamIt programs are composed of processing blocks called

filters which contain an input tape from which they can read
values and an output tape to which they can write. Each
filter contains a work function which describes its atomic ex-
ecution step in the steady state. The work function contains
C-like imperative code, which can access filter state, call ex-
ternal routines and produce and consume data. The input
and output channels are treated as FIFO queues, which can
be accessed with three primitive operations: 1) pop(), which
returns the first item on the input tape and advances the
tape by one item, 2) peek(i), which returns the value at
the ith position on the input tape, and 3) push(v), which
pushes value v onto the output tape. Each filter must de-
clare the maximum element it will peek at, the number of
elements it will pop, and the number of elements that it will
push during an execution of work. These rates must be re-
solvable at compile time and constant from one invocation
of work to the next.
A program in StreamIt consists of a hierarchical graph

of filters. Filters can be connected using one of three
predefined structures (see Figure 6): 1) pipelines repre-
sent the serial computation of one filter after another, 2)
splitjoins represent explicitly parallel computation, and
3) feedbackloops allow cycles to be introduced into the

2

splitter

joiner

joiner

splitter

. . . .� � � � am

� � � � am

� � � � am

� � � � am � � � � am � � � � am

� � � � am

� � � � am

pipeline splitjoin feedbackloop

Figure 6: StreamIt structures: pipeline, splitjoin,
and feedbackloop.

stream graph. A stream is defined to be either a filter,
pipeline, splitjoin or feedbackloop. Every subcompo-
nents of a structure is a stream, and all streams have exactly
one input tape and exactly one output tape.
It has been our experience that most practical applications

can be represented using StreamIt’s hierarchical structures.
Though sometimes a program needs to be reorganized to
fit into the structured paradigm, there are benefits for both
the programmer and the compiler in having a structured
language [20]. In particular, linear analysis relies heavily on
the structure of StreamIt to express stream transformations
at a local and hierarchical level.

2. REPRESENTING LINEAR NODES
There is no general relationship that must hold between

a filter’s input data and its output data. In actual appli-
cations, the output is typically derived from the input, but
the relationship is not always clear since a filter has state
and can call external functions.
However, we note that a large subset of DSP operations

produce outputs that are some affine function of their input,
and we call filters that implement such operations “linear.”
Examples of such filters are finite impulse response (FIR)
filters, compressors, expanders and signal processing trans-
forms such as the discrete Fourier transform (DFT) and dis-
crete cosine transformation (DCT). Our formal definition of
a linear node is as follows (refer to Figure 7 for an illustra-
tion).

Definition 1. (Linear node) A linear node λ = {A, ~b, e,
o, u} represents an abstract stream block which performs an

affine transformation y = xA +~b from input elements x to

output elements y. A is a e×u matrix, ~b is a u-element row
vector, and e, o, and u are the peek, pop, and push rates,
respectively.

A “firing” of a linear node λ corresponds to the following
series of abstract execution steps. First, an e-element row
vector x is constructed with x[i] = peek(i). The node com-

putes y = xA+~b, and then pushes the u elements of y onto
the output tape, starting with y[u−1] and proceeding through
y[0]. Finally, o items are popped from the input tape.

The intuition of the computation represented by a linear
node is simply that specific columns generate specific out-
puts and specific rows correspond to using specific inputs.
The values found in row e− i−1 of A represents the weights
given to the ith input element when computing each output.
The values in column u− j− 1 of A and column u− j− 1 of
~b (i.e. the jth column from the right) represent the formula
to compute the jth output.

u columns

e row
s

u columns

[[]]A b
...

{ {ue

A

[] []

b

x

x + =

y

y
Figure 7: Linear filter as a vector-matrix operation

y ∈ program-variable
c ∈ constant⊥

~v,~b ∈ vector
〈~v, c〉 ∈ linear-form
map ∈ program-variable→ linear-form (a hashtable)
A ∈ matrix

code ∈ list of instructions, each of which can be:

y1 := const push(y1)
y1 := pop() (loop N code)
y1 := peek(i) (branch code1 code2)
y1 := y2 op y3

Figure 8: Data types for the extraction analysis.

3. LINEAR EXTRACTION ALGORITHM
Our linear extraction algorithm can identify a linear filter

and construct a linear node λ that fully captures its behav-
ior. The technique, which appears as Algorithm 1 on the
next page, is a forward dataflow analysis similar to constant
propagation. Unlike a standard dataflow analysis, we can
afford to symbolically execute all loop iterations, since most
loops within a filter’s work function have small bounds that
are known at compile time (if a bound is statically unre-
solvable, the filter is unlikely to be linear and we disregard
it).
Figure 8 contains an overview of our notation for the pseu-

docode. During symbolic execution, the algorithm main-
tains a map between each program variable y and a linear
form 〈~v, c〉. In an actual execution, the value of y would be
given by y = ~v · ~x + c, where ~x represents the input items.
The algorithm also maintains two constants pushcount and
popcount that indicate how many items have been pushed
and popped so far. As it encounters push operations, it

builds up the matrix A and vector ~b that will come to rep-
resent the linear node.
We briefly discuss the operation of Extract at each pro-

gram node. The algorithm is formulated in terms of a sim-
plified set of instructions, which appear in Figure 8. First
are the nodes that generate fresh linear forms. A constant
assignment y = c creates a form 〈~0, c〉 for y, since y has con-
stant part c and does not yet depend on the input. A pop

operation creates a form 〈BuildCoeff(popcount), 0〉, where
BuildCoeff introduces a coefficient of 1 for the current in-
dex on the input stream. A peek(i) operation is similar, but
offset by the index i.
Next are the instructions which combine linear forms. In

the case of addition or subtraction, we simply add the com-
ponents of the linear forms. In the case of multiplication,
the result is still a linear form if either of the terms is a
known constant (that is, if either term has a zero vector of
input coefficients.) For division, the result is linear only if
the divisor is a non-zero constant1 and for non-linear oper-

1Note that if the dividend is zero and the divisor has a

3

Algorithm 1 Linear extraction analysis.

proc Toplevel(filter F) returns linear node for F

1. Set Peek, Pop, Push equal to I/O rates of filter F .

2. Let A0 ← new float[Peek][Push] with each entry = ⊥

3. Let ~b0 ← new float[Push] with each entry = ⊥

4. (map, A,~b, popcount, pushcount)←

Extract(Fwork, (λx.⊥), A0,~b0, 0,Push− 1)

5. if A and ~b contain no ⊥ entries then
return linear node λ = {A,~b,Peek,Pop,Push}

else
fail

endif

proc BuildCoeff(int pos) returns ~v for peek at index pos
~v = ~0Peek
~v[Peek− pos] = 1
return ~v

Global Variables: int Peek, Pop, Push

ations (e.g., bit-level and boolean), both operands must be
known constants. If any of these conditions are not met,
then the LHS is assigned a value of ⊥, which will mark the
filter as non-linear if the value is ever pushed.
The final set of instructions deal with control flow. For

loops, we resolve the bounds at compile time and execute the
body an appropriate number of times. For branches, we have
to ensure that all the linear state is modified consistently on
both sides of the branch. For this we apply the confluence
operator u, which we define for scalar constants, vectors,
matrices, linear forms, and maps. c1uc2 is defined according
to the lifted lattice constant⊥. That is, c1 u c2 = c1 if and
only if c1 = c2; otherwise, c1uc2 = ⊥. For vectors, matrices,
and linear forms, u is defined element-wise; for example,
A′ = A1 u A2 is equivalent to A

′[i, j] = A1[i, j] u A2[i, j].
For maps, the meet is taken on the values: map1 umap2 =
map’, where map’.get(x) = map1.get(x) umap2.get(x).
Our implementation of linear extraction also deals with

function calls. It is straightforward to transfer the linear
state across a call site, although we omit this from the pseu-
docode for the sake of presentation. Also implicit in the
algorithm description is the fact that all variables are lo-
cal to the work function. If a filter has persistent state, all
accesses to that state are marked as ⊥.

4. COMBINING LINEAR FILTERS
A primary benefit of linear filter analysis is that neigh-

boring filters can be collapsed into a single matrix represen-
tation if both of the filters are linear. This transformation
automatically eliminates redundant computations in linear
sections of the stream graph, thereby allowing the program-
mer to write simple, modular filters and leaving the com-
bination to the compiler. In this section, we first describe
a linear expansion operation that serves as a building block
for the combination techniques. We then give rules for col-

non-zero coefficients vector, we cannot conclude that the
result is zero, since certain values of the inputs might cause
a singularity.

proc Extract(code, map, A, ~b, int popcount, int pushcount)

returns updated map, A, ~b, popcount, and pushcount
for i← 1 to code.length do
switch code[i]
case y := const
map.put(y, (~0Peek, const))

case y := pop()
map.put(y, 〈BuildCoeff(popcount), 0〉)
popcount++

case y := peek(i)
map.put(y, 〈BuildCoeff(popcount+ i), 0〉)

case push(y)
〈~v, c〉 ← map.get(y)
if pushcount = ⊥ then fail
A[∗, pushcount]← ~v
b[pushcount]← c
pushcount--

case y1 := y2 op y3, for op ∈ {+,−}
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)
map.put(y1, 〈~v2 op ~v3, c2 op c3〉)

case y1 := y2 ∗ y3

〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)

if ~v2 = ~0Peek then
map.put(y1, (c2 ∗ ~v3, c2 ∗ c3))

else if ~v3 = ~0Peek then
map.put(y1, (c3 ∗ ~v2, c3 ∗ c2))

else
map.put(y1,⊥)

case y1 := y2/y3

〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)

if ~v3 = ~0Peek ∧ y3 6= 0 then
map.put(y1, (

1
c3
∗ ~v2, c2/c3))

else
map.put(y1,⊥)

case y1 := y2 op y3, for op ∈ {&, |,∧,&&, ||, !, etc.}
〈~v2, c2〉 ← map.get(y2)
〈~v3, c3〉 ← map.get(y3)

map.put(y1, (~0Peek u ~v2 u ~v3, c2 op c3))

case (loop N code′)
for j ← 1 to N do

(map, A,~b, popcount, pushcount) ←

Extract(code,map, A,~b, popcount, pushcount)

case (branch code1 code2)

(map1, A1,~b1, popcount1, pushcount1)←

Extract(code1,map, A,~b, popcount, pushcount)

(map2, A2,~b2, popcount2, pushcount2)←

Extract(code2,map, A,~b, popcount, pushcount)
map← map1 umap2
A← A1 uA2
~b← ~b1 u~b2
popcount← popcount1 u popcount2
pushcount← pushcount1 u pushcount2

end for
return (map, A, ~b, popcount, pushcount)

4

U' mod U U U U U
U'

e o

e

e

e'

o

e

e

o

0

0

A
A

A

A
A

e' - (e + o * (- 1))u'
u

Figure 9: Expanding a linear node to rates (e′, o′, u′).

lapsing pipelines and splitjoins into linear nodes; we do
not yet deal with feedbackloops as they require the notion
of “linear state” which we do not describe here.

4.1 Linear Expansion
In StreamIt programs, the input and output rate of each

filter in the stream graph is known at compile time. The
StreamIt compiler leverages this information to compute a
static schedule–that is, an ordering of the node executions
such that each filter will have enough data available to atom-
ically execute its work function, and no buffer in the stream
graph will grow without bound in the steady state. A gen-
eral method for scheduling StreamIt programs is given by
Karczmarek [14].
A fundamental aspect of the steady-state schedule is that

neighboring nodes might need to be fired at different fre-
quencies. For example, if there are two filters F1 and F2

in a pipeline and F1 produces 2 elements during its work
function but F2 consumes 4 elements, then it is necessary to
execute F1 twice for every execution of F2.
Consequently, when we combine hierarchical structures

into a linear node, we often need to expand a matrix repre-
sentation to represent multiple executions of the correspond-
ing stream. This expansion can be done as follows.

Transformation 1. (Linear expansion) Given a linear

node λ = {A,~b, e, o, u}, the expansion of λ to a rate of

(e′, o′, u′) is given by expand(λ, e′, o′, u′) = {A′,~b′, e′, o′, u′},

where A′ is a e′×u′ matrix and b̃′ is a u′-element row vec-
tor:

shift(r, c) is a u′ × e′ matrix :

shift(r, c)[i, j] =

A[i− r, j − c]
if i− r ∈ [0, e− 1] ∧ j − c ∈ [0, u− 1]
0 otherwise

A′ =
∑du′/ue

m=0 shift(u′ − u−m ∗ u, e′ − e−m ∗ o)

b̃′[j] = ~b[u− 1− (u′ − j − 1) mod u]

The intuition behind linear expansion is straightforward
(see Figure 9.) Linear expansion aims to scale the push,
pop, and peek rates of a linear node while preserving the
functional relationship between the values pushed and the
values peeked on a given execution. To do this, we con-
struct a new matrix A′ that contains copies of A along the

diagonal. To account for items that are popped between
invocations, each copy of A is offset by o from the previous
copy. The complexity of the definition is due to the end
cases. If the new push rate u′ is not a multiple of the old
push rate u, then the last copy of A includes only some of
its columns. Similarly, if the new peek rate e′ exceeds that
which is needed by the diagonal of As, then A′ needs to be
padded with zero’s at the top (since it peeks at some values
without using them in the computation.)
Note that a sequence of executions of an expanded node

λ′ might not be equivalent to any sequence of executions of
the original node λ, because expansion resets the push and
pop rates and can thereby modify the ratio between them.
However, if u′ = k ∗u and o′ = k ∗o for some integer k, then
λ′ is completely interchangeable with λ. In the combination
rules that follow, we utilize linear expansion both in contexts
that do and do not satisfy this condition.

4.2 Collapsing Linear Pipelines
The pipeline construct is used to compose streams in

sequence, with the output of stream i connected to the in-
put of stream i+ 1. The following transformation describes
how to collapse two linear nodes in a pipeline; it can be
applied repeatedly to collapse any number of neighboring
linear nodes.

Transformation 2. (Pipeline combination) Given two
linear nodes λ1 and λ2 where the output of λ1 is connected
to the input of λ2 in a pipeline construct, the combination
pipe(λ1, λ2) = {A

′, b̃′, e′,o′,u′} represents an equivalent
node that can replace the original two. Its components are
as follows:

chanPop = lcm(u1, o2)

chanPeek = chanPop+ e2 − o2

λe1 = expand(λ1, chanPeek ∗
o1
u1
+ e1 − o1,

chanPop ∗ o1
u1
, chanPeek)

λe2 = expand(λ2, chanPeek,
chanPop, chanPop ∗ u2

o2
)

A′ = Ae
1A

e
2

b̃′ = ~be1A
e
2 +~b

e
2

e′ = ee1

o′ = oe1

u′ = ue2

The basic forms of the above equations are simple to de-
rive. Let ~xi and ~yi be the input and output channels, respec-

tively, for λi. Then we have by definition that ~y1 = ~x1A1+~b1
and ~y2 = ~x2A2+~b2. But since λ1 is connected to λ2, we have

that ~x2 = ~y1 and thus ~y2 = ~y1A2+~b2. Substituting the value

of ~y1 from our first equation gives ~y2 = ~x1A1A2+~b1A2+~b2.
Thus, the intuition is that the two-filter sequence can be

represented by matrices A′ = A1A2 and ~b
′ = ~b1A2 + ~b2,

with peek and pop rates borrowed from λ1 and the push
rate borrowed from λ2.
However, there are two implicit assumptions in the above

analysis which complicate the equations for the general case.
First, the dimensions of A1 and A2 must match for the ma-
trix multiplication to be well-defined. If u1 6= e2, this will
require constructing expanded nodes λe1 and λe2 in which
the push and peek rates match (and thus Ae

1 and A
e
2 can be

multiplied.)

5

The second complication is with regards to peeking. If
the downstream node λ2 peeks at items which it does not
consume (i.e., if e2 > o2), then there needs to be a buffer
to hold items that are read during multiple invocations of
λ2. However, in our current formulation, a linear node has
no concept of internal state, such that this buffer cannot
be incorporated into the collapsed representation. To deal
with this issue, we adjust the expanded form of λ1 to re-
calculate items that λ2 uses more than once, thereby trad-
ing computation for storage space. This adjustment is ev-
ident in the push and pop rates chosen for λe1: though λ1

pushes u1 items for every o1 items that it pops, λ
e
1 pushes

chanPeek ∗ u1 for every chanPop ∗ o1 that it pops. When
chanPeek > chanPop, this means that the outputs of λe1
are overlapping, and chanPeek − chanPop items are being
regenerated on every firing.
Note that although λe1 performs duplicate computations

in the case where λ2 is peeking, this computation cost can
be amortized by increasing the value of chanPop. That is,
though the equations set chanPop as the least common mul-
tiple of u1 and o2, any common multiple is legal. As chanPop
grows, the regenerated portion chanPeek−chanPop becomes
smaller on a percentage basis.
However, it is the case that some collapsed linear nodes are

always less efficient than the original pipeline sequence. The
worst case is when Ae

1 is a column vector and A
e
2 is a row vec-

tor, which requires O(N) operations originally but O(N 2)
operations if combined (assuming vectors of length N). In
general, the compiler can identify performance-degrading
combinations when the number of non-zero elements in A′

exceeds the sum of non-zero elements in Ae
1 and A

e
2.

4.3 Collapsing Linear SplitJoins
The splitjoin construct allows the StreamIt programmer

to express explicitly parallel computations. Data elements
that arrive at the splitjoin are directed to the parallel child
streams using one of two pre-defined splitter constructs:
1) duplicate, which sends a copy of each data item to all
of the child streams, and 2) roundrobin, which distributes
items cyclically according to an array of weights. The data
from the parallel streams are combined back into a single
stream by means of a roundrobin joiner with an array of
weights w. First, w0 items from the output tape of the
leftmost child are placed onto the overall output tape, then
w1 elements are taken from the second leftmost child, and
so on. The process repeats itself after one complete set of
∑N−1

i=0 wi elements has been pushed.
In this section, we demonstrate how to collapse a splitjoin

into a single linear node when all of its children are linear
nodes. Since the children of splitjoins in StreamIt can be
parameterized, it is often the case that all sibling streams are
linear if any one of them is linear. However, if a splitjoin
contains only a few adjacent streams that are linear, then
these streams can be combined by wrapping them in a hi-
erarchical splitjoin and then collapsing the wrapper com-
pletely. Our technique also assumes that each splitjoin

admits a valid steady-state schedule; this property is veri-
fied by the StreamIt semantic checker.
Our analysis distinguishes between two cases. For dupli-

cate splitters, we directly construct a linear node from the
child streams. For roundrobin splitters, we translate the
splitjoin to use a duplicate splitter and then rely on the
first analysis to construct a linear node. We describe these

w
n

w
n
w
n

w
2

w
2
w
2

w
1

w
1
w
1

A =1
e

A =2
e

A =n
e

A' =

Figure 10: Matrix resulting from combining a
splitjoin of rate matched sub streams.

translations below.

4.3.1 Duplicate Splitter
Intuitively, there are three main steps to combining a du-

plicate splitjoin into a linear node. Since the combined node
will represent a steady-state execution of the splitjoin con-
struct, we first need to expand each child node according to
its multiplicity in the schedule. Secondly, we need to ensure
that each child’s matrix representation has the same number
of rows–that is, that each child peeks at the same number of
items. Once these conditions are satisfied, we can construct
a matrix representation for the splitjoin by simply arranging
the columns from child streams in the order specified by the
roundrobin joiner (see Figure 10). This third step is simpli-
fied by the fact that, with a duplicate splitter, each row of a
child’s linear representation refers to the same input element
to the splitjoin.
The following transformation describes splitjoin combina-

tion in mathematical terms.

Transformation 3. (Duplicate splitjoin combination) Given
a splitjoin s containing a duplicate splitter, children that
are linear nodes λ0 . . . λn−1, and a roundrobin joiner with
weights w0 . . . wn−1, the combination splitjoin(s) = {A′,

b̃′, e′, o′, u′} represents an equivalent node that can replace
the entire stream s. Its components are as follows:

joinRep = lcm(lcm(u1,w1)
w1

, . . . , lcm(un,wn)
wn

)

maxPeek = maxi(oi ∗ repi + ei − oi)

∀k ∈ [0, n− 1] :

wSumk =
∑k−1

i=0 wi

repk =
wk∗joinRep

uk

λek = expand(λk,maxPeek, ok ∗ repk, uk ∗ repk)

∀k ∈ [0, n− 1], ∀m ∈ [0, joinRep− 1], ∀n ∈ [0, uk − 1] :

A′[∗, u′ − 1− n−m ∗ wSumn − wSumk] = Ae
k[∗, u

e
k − 1− n]

b̃′[u′ − 1− n−m ∗ wSumn − wSumk] = bek[u
e
k − 1− n]

e′ = ee0 = · · · = een−1

o′ = oe0 = · · · = oen−1

u′ = joinRep ∗ wSumn

The above formulation is derived as follows. The joinRep
variable represents how many cycles the joiner completes in
an execution of the splitjoin’s steady-state schedule; joinRep
is the minimal number of cycles required for each child node
to execute an integral number of times and for all of their

6

output to be consumed by the joiner. Similarly, repk gives
the execution count for child k in the steady state. Then,
in keeping with the procedure described above, λek is the
expansion of the k’th node by a factor of repk, with the peek
value set to the maximum peek across all of the expanded
children. Following the expansion, each λei has the same
number of rows, as the peek uniformization caused shorter
matrices to be padded with rows of zero’s at the top.
The final phase of the transformation is to re-arrange the

columns of the child matrices into the columns of A′ and
~b′. Figure 10 elucidates this process, though its notation is
somewhat cumbersome. The equation can be understood as
follows: for the k’th child and the m’th cycle of the joiner,
the n’th item that is pushed by child k will appear appear at
a certain location on the joiner’s output tape. This location
(relative to the start of the node’s execution) is n + m ∗
wSumn + wSumk, as the reader can verify. But since the
right-most column of each array A holds the first item to
be pushed, we need to subtract this location from the width
of A when we are re-arranging the columns. The width of
A is the total number of items pushed–u′ in the case of A′

and uek in the case of A
e
k. Hence the equation as written

above: we copy all items in a given column from Ae
k to A

′,
defining each location in A′ exactly once. The procedure for
b is analogous.
Finally, it remains to calculate the peek, pop, and push

rates of the combined node. The peek rate e′ is simply
maxPeek, which we defined to be equivalent for all the ex-
panded child nodes. The push rate joinRep ∗ wSumm is
equivalent to the number of items processed through the
joiner in one steady-state execution. Finally, for the pop
rate we rely on the fact that the splitjoin is well-formed and
admits a schedule in which no buffer grows without bound.
If this is the case, then the pop rates must be equivalent for
all the expanded streams; otherwise, some outputs of the
splitter would accumulate infinitely on the input channel of
some stream.
These input and output rates–in combination with the

values of A′ and ~b′ defined above–define a linear node that
exactly represents the parallel combination of child nodes
that are fed by a duplicate splitter.

4.3.2 Roundrobin Splitter
In the case of a roundrobin splitter, items are directed to

each child stream si according to weight vi: the first v0 items
are sent to s0, the next v1 items are sent to s1, and so on.
Since a child never sees the items that are sent to sibling
streams, the items that are seen by a given child form a
periodic but non-contiguous segment of the splitjoin’s input
tape. Thus, in collapsing the splitjoin, we are unable to
directly use the columns of child matrices as we did with
a duplicate splitter, since with a roundrobin splitter these
matrices are operating on disjoint sections of the input.
Instead, we collapse linear splitjoins with a roundrobin

splitter by converting the splitjoin to use a duplicate split-
ter. In order to maintain correctness, this involves adding
a decimator on each branch of the splitjoin that eliminates
items which were intended for other streams.

Transformation 4. (Roundrobin to duplicate) Given a
splitjoin s containing a roundrobin splitter with weights v0 . . .
vn−1, children that are linear nodes λ0 . . . λn−1, and a round-
robin joiner j, the transformed rr-to-dup(s) is a splitjoin
with a duplicate splitter, linear child nodes λ′0 . . . λ

′
n−1, and

roundrobin joiner j. The child nodes are computed as fol-
lows:

vSumk =
∑k−1

i=0 vi

vTot = vSumn−1

∀k ∈ [0, n− 1] :

decimate[k] is a linear node {A,~0, vTot, vTot, vTot}

where A[i, j] =

1 if i = j ∧
vSumk < i < vSumk+1

0 otherwise

λ′k = pipe(decimate[k], λk)

In the above translation, we utilize the linear pipeline
combinator pipe to construct each new child node λei as a
composition of a decimator and the original node λi. Each
decimator is a square matrix that produces and consumes
vTot items, which is the number of items processed in one
cycle of the roundrobin joiner. Those items intended for
stream i are copied with a coefficient of 1, while all others
are eliminated with a coefficient of 0.

4.4 Applications of Linear Combination
There are numerous instances where the linear combina-

tion transformation could benefit a programmer. For ex-
ample, although a bandpass filter can be implemented with
a low pass filter followed by a high pass filter, actual im-
plementations tend to determine the coefficients of a single
combined filter that performs the same computation. While
a simple bandpass filter is easy to combine manually, in an
actual system several different filters might be designed and
implemented by several different engineers, making overall
filter combination infeasible.
Another common operation in discrete time signal pro-

cessing is downsampling to reduce the computational re-
quirements of a system. Downsampling is most often im-
plemented as a low pass filter followed by an M compressor
which passes every Mth input sample to the output. In
practice, the filters are combined to avoid computing dead
items in the low pass filter. However, the system specifi-
cation contains both filters for the sake of understanding.
Our analysis can start with the specification and derive the
efficient version automatically.
A final example is a multi-band equalizer, in which N dif-

ferent frequency bands are filtered in parallel (see our FM-
Radio benchmark). If these filters are time invariant, then
they can be collapsed into a single node. However, design-
ing this single overall filter is difficult, and any subsequent
changes to any one of the sub filters will necessitate a total
redesign of the filter. With our automated combination pro-
cess, any subsequent design changes will necessitate only a
recompile rather than a manual redesign.

5. TRANSLATION TO FREQUENCY DOMAIN
Our linear analysis framework provides a compile time

formulation of the computation that a linear stream is per-
forming and we use this information to exploit well known
domain specific optimizing transformations. Using linear
node information, our compiler identifies convolution regions
that require substantially fewer computations when they are
translated into the frequency domain.
Calculating a convolution sum is a common and funda-

mental operation in discrete time signal processing. If the

7

convolution region is sufficiently large, transforming the data
to the frequency domain, performing a simple vector multi-
ply and converting back to the time domain requires fewer
operations than the straightforward convolution.
The transformation from convolution sum into frequency

multiplication has always been done explicitly by the pro-
grammer because no compiler analysis has had the infor-
mation to determine when a convolution sum is being com-
puted. As the complexity of DSP programs grow, determin-
ing the disparate regions across which these optimizations
can be applied is an ever more daunting task. For example,
individual filters may not perform sufficiently large convo-
lutions to merit this transformation, but after a linear com-
bination of multiple filters the transformation will be ben-
eficial. Furthermore, differing architectural features makes
the task of portably implementing computational transforms
even more daunting.

5.1 Transformation Overview
The convolution sum y[n] = x[n]∗h[n] is defined as y[n] =

∑∞
k=−∞ x[k]h[n− k]. In StreamIt, if a stream is calculating

a convolution sum the input (x[n]) and output (y[n]) corre-
spond exactly to the input and output tapes where where n
denotes an index in the time domain. Furthermore, a stream
will be computing a convolution sum when o = 1 in which
case we can identify the values h[n] as exactly the columns
of A in the corresponding linear node.
Calculating the convolution in the frequency domain is

more efficient because of the existence of the Fast Fourier
Transform (FFT) algorithm for quickly calculating the Dis-
crete Fourier Transform (DFT) of a signal. Calculating a
convolution takes O(N2) time, and performing an equiva-
lent computation using an FFT takes only two O(Nlg(N))
time-frequency conversions coupled with an O(N) frequency
domain vector multiply.
To compute the convolution of two discrete time signals,

x[n] ∗h[n], first the DFT of both sequences (X[k] and H[k])
is calculated where k denotes an index in the frequency do-
main. Multiplying X[k] and H[k] element-wise produces a
new sequence Y [k], and taking the inverse DFT (IDFT) of
Y [k] produces y[n] which is precisely the same as x[n]∗h[n].
When the compiler identifies a stream that computes a

convolution sum, it generates a new filter which computes
H[k] at compile time. The stream’s work function is changed
to perform the following:

1. X[k] is is calculated from the input tape using an FFT
algorithm.

2. X[k] is multiplied element-wise with H[k] to produce
Y [k].

3. y[n] is obtained by transforming Y [k] back to the time
domain using an inverse FFT.

4. The appropriate values of y[n] are pushed on to the
output tape.

5.2 Automatic Transformation
To implement this transformation, the compiler needs to

compute H[k] at compile time. The compiler transforms
FIR filters which have h[n] of length e and push rate u = 1,
which requires expanding the filter to overcome the constant
overhead factors. Therefore, the transformed filter needs to
produce more than one output on each execution of work.
The number of outputs, N , to produce on each execution

of work is determined automatically by the compiler and
set to approximately 2e, a number determined by empirical
observations. N is then rounded up such that N + 2(e− 1)
is a power of two which results in the most efficient FFT
calculations.
The frequency transformation generates a new filter that

peeks e′ = N+e−1 items each execution where the original
stream used only e. The compiler automatically computes
the complex values of H[k] = FFT (N + 2(e− 1), h[n]), the
N + 2(e − 1) point DFT of h[n] at compile time and saves
them as constants in the filter. A new compiler-generated
work function is generated that calculates the complex val-
ued X[k] = DFT (N+2(e−1), x[n]), the N+2(e−1) DFT of
the input and then calculates Y [k], the element-wise vector
product of X[k] and H[k]. Finally, the new work function
performs the inverse FFT y[n] = IFFT (N + 2e− 2, y[n]).
Using N+e−1 input items produces a length N+2(e−1)

convolution sum, of which both the first and last e−1 values
are incorrect. Since every output requires the value of e
inputs to calculate, without filter state only the middle N
items of y[n] are actual output values. In an overlap-discard
implementation, the work function simply uses the middle N
values of y[n] and discards the e− 1 elements on both ends,
and advances the input tape by N . The following N + e− 1
input values are then used to produce the next N outputs.
The overlap and add method [16] is well known. This

algorithm exploits the fact that the overlapping values of
y[n] contain partial output computations due to both the
previous and the next N+e−1 inputs. The first e−1 of y[n]
are part of the computation from the previous invocation of
the work function and the last e − 1 are part of the next
invocation. For the automatic frequency transformation, the
compiler creates a filter which first pushes y[n] + p[n] for
0 ≤ n ≤ (e− 1)− 1, where p[n] contains partial results from
the previous invocation. Then the filter pushes the values of
y[n] for e−1 ≤ n ≤ N +(e−1)−1. Finally, p[n] is updated
such that p[n] = y[n+(N+e−1)] for 0 ≤ n ≤ N+2(e−1)−1
which are used on the next invocation of work; the input tape
is then advanced by N + e− 1.

6. RESULTS
Our compiler currently has two linear analysis optimiza-

tions. The first, linear replacement, replaces the largest lin-
ear hierarchical streams possible with filters that directly
compute the calculation specified by the corresponding lin-
ear nodes. The second optimization, frequency replacement,
replaces all streams which implement a sufficiently long con-
volution using the frequency transformation described in
Section 5. Below we describe experiments and results that
demonstrate performance improvements due to these two
optimizations.

6.1 Measurement Methodology
Both linear replacement and frequency replacement in-

crease performance by decreasing the number of floating
point computations (principally multiplications) required per
output. Our measurement platform is a Dual Intel 2.2 GHz
P4 Xenon processor system with 2GB of memory running
GNU/Linux. We compile our benchmarks using StreamIt’s
uniprocessor backend and generate executables from the re-
sulting C files using gcc with -O2 optimization.
To measure the number of runtime multiplications we use

a simple instruction counting program written using the Dy-

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FIR TargetDetect FilterBank RateConvert FMRadio

Benchmark

M
u

lt
ip

lic
at

io
n

s
re

m
ai

n
in

g
linear replacement frequency replacement both

Figure 11: Percent of multiplication operations re-
maining after performing linear replacement, fre-
quency replacement, and both.

namoRIO[1] infrastructure. There are no standard bench-
marks written yet for StreamIt, so we use a set of repre-
sentative programs2 which perform computations that are
found in actual streaming applications: 1) FIR, a single 256
point rectangularly windowed low pass FIR filter (ωc =

π
3
);

2) TargetDetect, four matched filters performing thresh-
old target detection in parallel; 3) FilterBank, a multi-rate
signal decomposition processing block common in commu-
nications and image processing; 4) RateConvert, an audio
signal down sampler that converts the sampling rate by a
non-integral factor; 5) FMRadio, an FM software radio
with equalizer.

6.2 Performance
To determine the effects of our linear replacement and fre-

quency replacement optimizations, we compiled each bench-
mark program with linear replacement, with frequency re-
placement and with both linear replacement and frequency
replacement. Figure 11 shows the reduction of multiplica-
tions due to our optimizations.
For the FIR filter, all of the multiplication reduction comes

from the frequency replacement optimization because the
entire application is comprised of a single filter calculating
a convolution sum so there is nothing to combine. The mul-
tiplication reduction in TargetDetect is also solely due to
the frequency transformation because threshold detection is
non-linear which makes the parallel computation blocks un-
collapsible. Finally, RateConvert contains a large low pass
filter which also benefits from frequency replacement.
All of the multiplication reduction in the FMRadio bench-

mark is due to the automatic combination of parallel equal-
izer computations. Table 1 shows the number of nodes in
each benchmark both before and after linear replacement.
FilterBank is the only benchmark where multiplications

are reduced more by both optimizations than either alone.
Linear replacement reduces the required multiplications be-
cause it can combine the action of parallel analysis and syn-
thesis channels into an overall FIR filter. Frequency replace-
ment alone helps multiplication reduction only somewhat
because FilterBank contains fairly small FIR filters. How-
ever, frequency replacement speeds up the calculation of the
overall filter generated by linear replacement, and thus de-

2Stream graphs appear in Appendix A.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

FIR TargetDetect FilterBank RateConvert FMRadio

Benchmark

S
p

ee
d

u
p

Figure 12: Execution speedup for each of the bench-
marks with both linear replacement and frequency
replacement optimizations.

creases the number of multiplies even further.
Reducing computation does not necessarily translate into

execution time improvement, but as Figure 12 demonstrates,
our benchmarks speedup on average by a factor of five and
by a factor of 6.5 in the best case. Our current implemen-
tation takes advantage of the machine tuned FFT package
FFTW [5]), to perform the necessary time-frequency con-
versions. The benchmarks where multiplication reduction is
due only to linear replacement (FMRadio) also show a large
speedup.

7. RELATED WORK
Several groups are researching strategies for efficient code

generation for DSP applications. SPIRAL is a system that
generates libraries for signal processing algorithms[12, 13, 4].
Using a feedback-directed search process, DSP transforms
are optimized for the underlying architecture. The input
language to SPIRAL is SPL[23, 22], which provides a param-
eterizable way of expressing matrix computations. Given a
matrix representation in SPL, SPIRAL generates formulas
that correspond to different factorizations of the matrix. It
searches for the most efficient formula using several tech-
niques, including dynamic programming and stochastic evo-
lutionary search.
We consider our work to be complementary to SPIRAL.

While SPIRAL starts with a matrix representation in SPL,
we start with general StreamIt code and use linear dataflow
analysis to extract a matrix representation where possible.
Our linear combination rules are distinct from the factor-
izations of SPIRAL, as StreamIt nodes can peek at items
that they do not consume. In the future, SPIRAL could be
integrated with StreamIt to optimize a matrix factorization
for a given architecture.
The ATLAS project [21] also aims to produce fast libraries

for linear algebra manipulations, focusing on adaptive li-
brary generation for varying architectures. FFTW [5] is a
runtime library of highly optimized FFT’s that dynamically
adapt to architectural variations. Again, StreamIt is distin-
guished by its extraction and optimization of linear filters
from general user-level code.
ADE (A Design Environment) is a system for specify-

ing, analyzing, and manipulating DSP algorithms [3]. ADE
includes a rule-based system that can search for improved

9

Originally After Linear Replacement
Benchmark Filters Pipelines SplitJoins Average Filters Pipelines SplitJoins

(linear) (linear) (linear) vector size
FIR 3 (1) 1(0) 0 (0) 256 3 1 0
TargetDetect 10 (4) 1 (0) 1 (0) 300 10 1 1
FilterBank 27 (25) 17 (9) 4 (3) 51 15 8 1
RateConvert 5 (3) 2 (0) 0 (0) 335 5 2 0
FMRadio 25 (22) 3 (1) 2 (2) 33 5 1 0

Table 1: Statistics for benchmarks before and after transformations.

arrangements of stream algorithms using extensible trans-
formation rules. However, the system uses predefined signal
processing blocks that are specified in mathematical terms,
rather than the user-specified imperative code that appears
in a StreamIt filter. Moreover, ADE is intended for algo-
rithm exploration, while StreamIt includes support for code
generation and whole-program development. In addition to
ADE, other work on DSP algorithm development is surveyed
in [15].
A number of other programming languages are oriented

around a notion of a stream (see [19] for a survey.) Syn-
chronous languages such as LUSTRE [10], Esterel [2], and
Signal [7] target the embedded domain, while languages such
as Occam [11], SISAL [6] and StreamC [17] target parallel
and vector targets. However, none of the compilers for these
languages have coarse-grained, DSP-specific analyses such
as linear filter detection.
Note that the “linear data flow analysis” of Ryan [18] is

completely unrelated to our work; it aims to do program
analysis in linear time.

8. CONCLUSION
This paper presents a set of automated analyses for de-

tecting, analyzing, and optimizing linear filters in stream-
ing applications. Though the mathematical optimization of
linear filters has been a longtime focus of the DSP commu-
nity, our techniques are novel in the automated application
of these techniques to programs that are written in a flexi-
ble and high-level programming language. We demonstrate
that using linear dataflow analysis, linear combination, and
automated frequency translation, we can improve execution
speed by a factor of 6.5.
The ominous rift between the design and implementation

of signal processing applications is growing by the day. Algo-
rithms are designed at a conceptual level utilizing modular
processing blocks that that naturally express the computa-
tion. However, in order to obtain good performance, each
hand-tuned implementation is forced to disregard the ab-
straction layers and painstakingly consider specialized whole-
program optimizations. The StreamIt project aims to re-
duce this process to a single stage in which the designers
and implementors share a set of high-level abstractions that
can be efficiently handled by the compiler.
The linear analysis described in this paper represents a

first step toward this goal. By automatically performing
linear combination and frequency translation, it allows pro-
grammers to write linear stream operations in a natural and
modular fashion without any performance penalty.

9. REFERENCES
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A

transparent dynamic optimization system. In PLDI, 1999.

[2] G. Berry and G. Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics,
Implementation. Science of Computer Prog., 19(2), 1992.

[3] M. M. Covell. An Algorithm Design Environment for
Signal Processing. PhD thesis, MIT, 1989.

[4] S. Egner, J. Johnson, D. Padua, M. Püschel, and J. Xiong.
Automatic derivation and implementation of signal
processing algorithms. SIGSAM Bulletin, 35(2):1–19, 2001.

[5] M. Frigo. A Fast Fourier Transform Compiler. PLDI, 1999.

[6] J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille”.
The Sisal Model of Functional Programming and its
Implementation. In Proceedings of the 2nd Aizu
International Symposium on Parallel
Algorithms/Architecture Synthesis, 1997.

[7] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A
declarative language for synchronous programming of
real-time systems. Springer Verlag LNCS, 274, 1987.

[8] M. Gordon. A stream-aware compiler for
communication-exposed architectures. Master’s thesis, MIT
Laboratory for Computer Science, August 2002.

[9] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli,
A. A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze,
and S. Amarasinghe. A Stream Compiler for
Communication-Exposed Architectures. ASPLOS, 2002.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data-flow programming language LUSTRE.
Proc. of the IEEE, 79(9), 1991.

[11] Inmos Corporation. Occam 2 Reference Manual. Prentice
Hall, 1988.

[12] J. Johnson, R. W. Johnson, D. A. Padua, and J. Xiong.
SPIRAL Home Page. http://www.ece.cmu.edu/~spiral/.

[13] J. Johnson, R. W. Johnson, D. A. Padua, and J. Xiong.
Searching for the best FFT formulas with the SPL
compiler. LNCS, 2017, 2001.

[14] M. A. Karczmarek. Constrained and phased scheduling of
synchronous data flow graphs for the streamit language.
Master’s thesis, MIT LCS, October 2002.

[15] A. V. Oppenheim and S. H. Nawab, editors. Symbolic and
Knowledge-Based Signal Processing. Prentice Hall, 1992.

[16] A. V. Oppenheim, R. W. Shafer, and J. R. Buck.
Discrete-Time Signal Processing. Prentice Hall, 1999.

[17] S. Rixner, W. J. Dally, U. J. Kapani, B. Khailany,
A. Lopez-Lagunas, P. R. Mattson, and J. D. Owens. A
Bandwidth-Efficient Architecture for Media Processing. In
HPCA, Dallas, TX, November 1998.

[18] S. Ryan. Linear data flow analysis. ACM SIGPLAN
Notices, 27(4):59–67, 1992.

[19] R. Stephens. A Survey of Stream Processing. Acta
Informatica, 34(7), 1997.

[20] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:
A Language for Streaming Applications. In Proc. of the
Int. Conf. on Compiler Construction (CC), 2002.

[21] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimizations of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, 2001.

[22] J. Xiong. Automatic Optimization of DSP Algorithms.
PhD thesis, Univ. of Illinois at Urbana-Champaign, 2001.

[23] J. Xiong, J. Johnson, R. W. Johnson, and D. A. Padua.
SPL: A language and compiler for DSP algorithms. In
PLDI, 2001.

10

Appendix A: Stream Graphs of Example Programs

FIRProgram

FloatSource_1
push=1
pop=0
peek=0

LowPassFilter_1
push=1
pop=1

peek=256

FloatPrinter_1
push=0
pop=1
peek=1

Figure 13: Stream graph for the FIR bench-
mark.

SamplingRateConverter

Pipeline

SampledSource_1
push=1
pop=0
peek=0

Expander_1
push=2
pop=1
peek=1

LowPassFilter_1
push=1
pop=1

peek=300

Compressor_1
push=1
pop=3
peek=3

FloatPrinter_1
push=0
pop=1
peek=1

Figure 14: Stream graph for the sampling rate
converter benchmark.

TargetDetect

TargetDetectSplitJoin

Pipeline Pipeline Pipeline Pipeline

TargetSource_1
push=1
pop=0
peek=0

DUPLICATE(1,1,1,1)

MatchedFilterOne_1
push=1
pop=1

peek=300

MatchedFilterTwo_1
push=1
pop=1

peek=300

MatchedFilterThree_1
push=1
pop=1

peek=300

MatchedFilterFour_1
push=1
pop=1

peek=300

WEIGHTED_ROUND_ROBIN(1,1,1,1)

FloatPrinter_1
push=0
pop=1
peek=1

ThresholdDetector_1
push=1
pop=1
peek=1

ThresholdDetector_2
push=1
pop=1
peek=1

ThresholdDetector_3
push=1
pop=1
peek=1

ThresholdDetector_4
push=1
pop=1
peek=1

Figure 15: Stream graph for the target detector
benchmark.

FilterBank

FilterBankPipeline

FilterBankSplitJoin

ProcessingPipeline

Pipeline

BandPassFilter

Pipeline

BandStopFilter

SplitJoin

ProcessingPipeline

Pipeline

BandPassFilter

Pipeline

BandStopFilter

SplitJoin

ProcessingPipeline

Pipeline

BandPassFilter

Pipeline

BandStopFilter

SplitJoin

DataSource_1
push=1
pop=0
peek=0

DUPLICATE(1,1,1)

LowPassFilter_1
push=1
pop=1

peek=100

LowPassFilter_3
push=1
pop=1

peek=100

LowPassFilter_5
push=1
pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1,1)

Adder_4
push=1
pop=3
peek=3

HighPassFilter_1
push=1
pop=1

peek=100

Compressor_1
push=1
pop=3
peek=3

ProcessFilter_1
push=1
pop=1
peek=1

Expander_1
push=3
pop=1
peek=1

DUPLICATE(1,1)

LowPassFilter_2
push=1
pop=1

peek=100

HighPassFilter_2
push=1
pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1)

Adder_1
push=1
pop=2
peek=2

HighPassFilter_3
push=1
pop=1

peek=100

Compressor_2
push=1
pop=3
peek=3

ProcessFilter_2
push=1
pop=1
peek=1

Expander_2
push=3
pop=1
peek=1

DUPLICATE(1,1)

LowPassFilter_4
push=1
pop=1

peek=100

HighPassFilter_4
push=1
pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1)

Adder_2
push=1
pop=2
peek=2

HighPassFilter_5
push=1
pop=1

peek=100

Compressor_3
push=1
pop=3
peek=3

ProcessFilter_3
push=1
pop=1
peek=1

Expander_3
push=3
pop=1
peek=1

DUPLICATE(1,1)

LowPassFilter_6
push=1
pop=1

peek=100

HighPassFilter_6
push=1
pop=1

peek=100

WEIGHTED_ROUND_ROBIN(1,1)

Adder_3
push=1
pop=2
peek=2

FloatPrinter_1
push=0
pop=1
peek=1

Figure 16: Stream graph for the filter bank
benchmark.

11

FMRadioApp

FMRadio

Pipeline

Equalizer

EqualizerSplitJoin

EqualizerInnerSplitJoin

EqualizerInnerPipeline EqualizerInnerPipeline EqualizerInnerPipeline EqualizerInnerPipeline EqualizerInnerPipeline EqualizerInnerPipeline EqualizerInnerPipeline EqualizerInnerPipeline EqualizerInnerPipeline

FloatOneSource_1
push=1
pop=0
peek=0

LowPassFilter_1
push=1
pop=1

peek=64

Compressor_1
push=1
pop=5
peek=5

FMDemodulator_1
push=1
pop=1
peek=2

DUPLICATE(1,1,1)

LowPassFilter_2
push=1
pop=1

peek=64

DUPLICATE(1,1,1,1,1,1,1,1,1)

LowPassFilter_12
push=1
pop=1

peek=64

WEIGHTED_ROUND_ROBIN(1,18,1)

FloatDiff_1
push=1
pop=2
peek=2

LowPassFilter_3
push=1
pop=1

peek=64

LowPassFilter_4
push=1
pop=1

peek=64

LowPassFilter_5
push=1
pop=1

peek=64

LowPassFilter_6
push=1
pop=1

peek=64

LowPassFilter_7
push=1
pop=1

peek=64

LowPassFilter_8
push=1
pop=1

peek=64

LowPassFilter_9
push=1
pop=1

peek=64

LowPassFilter_10
push=1
pop=1

peek=64

LowPassFilter_11
push=1
pop=1

peek=64

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2)

FloatDup_1
push=2
pop=1
peek=1

FloatDup_2
push=2
pop=1
peek=1

FloatDup_3
push=2
pop=1
peek=1

FloatDup_4
push=2
pop=1
peek=1

FloatDup_5
push=2
pop=1
peek=1

FloatDup_6
push=2
pop=1
peek=1

FloatDup_7
push=2
pop=1
peek=1

FloatDup_8
push=2
pop=1
peek=1

FloatDup_9
push=2
pop=1
peek=1

FloatNAdder_1
push=1
pop=10
peek=10

FloatPrinter_1
push=0
pop=1
peek=1

Figure 17: Stream graph for the FM radio benchmark.

12

Appendix B: Frequency Replacement Scaling

1
4

16
64

256

1
4

16
64

256

0

1

2

3

4

5

6

7

M
u

lt
ip

lic
at

io
n

 r
ed

u
ct

io
n

 f
ac

to
r

FIR size(M)Output size(N)

(a) Theoretical

1

16

256

1

32

512

0

1

2

3

4

5

6

7

M
u

lt
ip

lic
at

io
n

 r
ed

u
ct

io
n

 f
ac

to
r

FIR size(M)Output size(N)

(b) Empirical

Figure 18: Plots showing the theoretical and empirical multiplication reduction factor as a
function of the size of the FIR (M) and the number of outputs produced per calculation (N).
The dark regions denote an increase in the required number of multiplications and the light
regions a reduction.

Frequency replacement is an effective optimization because the asymptotic bounds for frequency domain
computation is lower than the bound for the time domain computation. We determined empirically the
point at which frequency replacement improves performance.

Direct convolution requires O(MN) multiplies. The FFT requires O(N + 2(M − 1))lg(N + 2(M − 1))
multiplications for both the conversion to and from the frequency domain, and multiplying two N+2(M−1)
vectors in the frequency domain requires O(N + 2(M − 1)) multiplications. Direct convolution produces
N outputs per iteration and the frequency implementation produces N +M − 1 outputs every iteration.
We define the “multiplication reduction factor” to be the number of multiplies required per output using
convolution divided by the the number of multiplies per output using the frequency transformation.

Figure 18 (a) shows a plot of the theoretical multiplication reduction factor and Figure 18 (b) shows the
same reduction factor measured empirically. The roughness in both the theoretical results and the data is
due to the fact that for the best FFT performance, N +2(M − 1) must be a power of two, and the compiler
automatically adjusts N upward to satisfy this requirement. The theoretical reduction numbers account
for the fact that our implementation requires four floating point multiplication operations to perform a
complex valued multiply in the frequency domain.

Based on the above analysis, our current compiler applies the frequency replacement transformation
on FIR filters that have length 90 or greater. The target output rate, N , is automatically set to be twice
the FIR length.

13

