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1 Introduction/Overview

In general, high level computer programming languages abstract away non-critical details from the program-

mer that are not focused on solving the problem at hand. Low level languages force programmers to deal

with details about the complex hardware that their programs are run on to achieve the fastest possible speed.

Optimizing compilers were invented in the late 1950s as a way to automate the process of code generation

and detail management while keeping much of the same speed of hand coded assembly. Therefore, the opti-

mizations that are implemented compilers need to be as clever as possible so as to produce the best possible

code. The most limiting factor faced by optimizations is that they need to be able to figure what a program

is doing, which is not a trivial problem. Determining what is happening in a program is accomplished by a

process called dataflow analysis[1].

Languages like C and FORTRAN abstracted away details about Von Neumann machines (register based,

monolithic memories, program counter, stack pointers, etc.) for the programmer. Languages like Java

and C# abstract away even more details such as explicit memory management and dynamic library use.

However, even these high level languages of today still target the Von Neumann machines of yesterday. As

computer architectures become increasingly complicated, with multiple processors, multiple memories and

often explicit communication that must be scheduled by the programmer, the Von Neumann architecture

no longer adequately describes the computational facilities available. Therefore, newer even higher level

languages are needed which are appropriate for this new class of architectures. The COMMIT group at

LCS is currently working on such a new high level language called StreamIt that provides a new level of

abstraction. StreamIt is a programming language for applications that operate on streams of data. By

focusing our attention on this particular domain of programs, our compiler knows more about programs that

are written. We therefore have many new opportunities for optimization.

One large and important subclass of streaming programs are programs which do Digital Signal Pro-

cessing (DSP). The goal of my MEng thesis is to lay the foundation for automatic performance improving

signal processing transformations within StreamIt. I will design, implement and test a compiler pass which

determines filters which compute linear functions. Using this information about linear filters, I hope to
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leverage existing research done by the DSP community in the area of fast signal processing implementations

to programs that are written in StreamIt. The less time programmers have to spend thinking about the

details of implementation, means the more time that they can spend writing new and useful applications,

resulting in an increase in programmer productivity.

2 StreamIt

StreamIt[12, 13, 15, 9] is a novel language for representing streaming applications. Streaming applications

operate on a (potentially) infinite amount of data. Examples of streaming applications include media process-

ing (MP3 audio, video), digital communication (cell phones, wireless networking), digital signal processing

(FFT, DCT, image processing) and any other application that needs to operate on a large amount of data.

StreamIt also attempts to provide a common, high level machine language for fabrics of interconnected

microprocessors such as the RAW[14, 11] microprocessor being developed at MIT or the CELL[10] micro-

processor being developed by IBM, Sony and Toshiba. Much like the Von Neumann machine became the

prototypical computation model for 30 years, computational fabrics stand poised to be the prototypical

computation model for the next 30 years. RAW consists of 16 processors (called tiles) in a 4x4 grid on a

single monolithic chip. The processors are modified MIPS RISC R10K cores and the communication between

cores is achieved over a static network or a dynamic network. The movement of data around the networks

is explicitly controlled by the programmer.

The major challenge of writing code for RAW is designing the network communication to take effective

use of all of the processors on the chip. To write a program for the raw chip, first the programmer determines

what computation to put on what chip. Then he or she writes code in C for each tile that implements that

computation. Then the programmer has to set up the communication between the various tiles and connect

up the processor cores in the appropriate fashion.

StreamIt automates the entire process partitioning the computation among the different processors (to

take advantage of parallelization) and arranging communication as well as managing buffers.

A StreamIt program is a structured stream graph, composed of hierarchically arranged computation

3



units. Filters are the basic building block of a stream graph. They process data from a single stream and

produce data that leaves the filter as a single stream.

3 Digital Signal Processing and Linear Transformations

One important class of applications for streaming computation is digital signal processing (DSP). Most of

the DSP literature is focused on systems which are linear and time invariant (LTI) because of their nice

mathematical properties. Almost all real systems are not actually linear or time invariant. However, most

real systems can be very accurately modeled as an LTI system over specific ranges of inputs and outputs,

and many DSP algorithms take advantage of this fact. In addition, many useful signal processing operations

compute linear functions of their inputs. It is these Linear Filters that I will be trying to identify.

3.0.1 Linearity, Time Invariance, and Linear Functions

Linear Suppose a system, H, operate on some input sequence x[n] and produces some output sequence

y[n], y[n] = H(x[n]). If H is linear, then the following statement is true: applies: H(a ∗ x[n] + b) =

a ∗ H(x[n]) + b where a and b are constants.

Time-invariant Time invariance means that shifting the input, x[n] by a certain amount, k, will shift the

output by k as well: if H(x[n]) = y[n] and H is time-invariant then H(x[n − k]) = y[n − k].

Linear Functions If a filter computes a linear function of its inputs, each output element of a filter can

be computed using a weighted combination the inputs and possibly an offset. A filter that computes a

linear function can also be represented as a matrix operation on an input vector to produce an output

vector. The values of the elements in the matrix correspond to the weights of the inputs used to

produce various outputs. For instance, if the input to a function is x[n] and the output is y[n], if it is

possible to find a matrix A and a vector b such that y[n] = Ax[n] + b then we characterize that filter

as computing a linear function.

By letting our representation expand to include all filters that can be described by y[n] = Ax[n]+b where

b is a constant, we can described all filters that compute linear functions.

4



Filter A

sum = 0;
for (i=0; i<3; i++)
  sum += peek(i)*(i+1);
push(sum);

sum = 0;
for (i=0; i<3; i++)
  sum += peek(i)*(i+4);
push(sum);

for (i=0; i<2; i++)
  pop();

filter A peek 3 pop 3 push 3 {

}

Representation in structured 
stream abstraction of StreamIt

input tape output tape

A = { }
1  4

2  5

3  6

y = A x

Representation in matrix form

Figure 1: The correspondence between a linear filter and a matrix. The left half of the figure shows example
code for Filter A which computes a linear function of its input. The input to filter A is shown as the three
blue items on its input tape (since it pops and peeks at 3 items). The output of filter A is shows as the two
green items on its output tape. The right half of the figure shows that the same filter can be though of as a
matrix multiplication on an input vector of three elements which yields an output vector of two elements.

4 StreamIt Filters as Matrices

Figure 1 shows an example filter in the StreamIt language, and its corresponding matrix representation as a

way to illustrate the correspondence between filters which compute linear functions and matrices operating

on an input vector to produce an output vector.

5 Linear Analysis and Optimization

5.1 Introduction

Many useful compiler optimizations rely on specific data about how the program’s execution can flow.

Analysis techniques that analyze the flow of data through the program are called dataflow analysis. Study

of the various canonical optimizations and their associated dataflow techniques (eg constant propagation,

common subexpression elimination, dead code elimination) has yielded a common theoretical framework

for framing various compiler analyses. The theoretical framework is well understood and presented in
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undergraduate level textbooks on compiler design[1, 2].

The central purpose of my thesis will be to develop the dataflow equations in the standard dataflow frame-

work and implement a linear analysis pass of the compiler. I will then implement one or more optimizations

using the dataflow information to demonstrate the usefulness of this data.

By characterizing systems as LTI, powerful mathematical results (such as Fourier analysis and Fourier

synthesis) can be applied. Because a wide range of physical systems can be modeled with LTI systems,

LTI systems have been the focus of the DSP community for some time. In particular, because they are so

widely studied and used, it is likely that a large subset of all StreamIt programs will contain sub parts that

implement LTI systems.

Because we expect a large class of StreamIt applications to contain LIT filters, if we can both detect that

a particular filter is LTI and make good use of that information to optimize the program (by leveraging the

plethora of existing work in the field) we can reach our goal of freeing programmers from having to write

optimized implementations of their algorithms.

5.2 Proposed Dataflow Analysis

To unify the talk about signal processing and the StreamIt language, we identify filter F with system H.

If H operates on some vector x with dimension q, and produces a vector y with dimension r, then F has

peek(q) and push(r). The goal of our dataflow analysis for each filter that computes a linear function, to

identify a matrix A and a vector b such that y = Ax+ b (that is the elements of y are weighted combinations

of the the elements of x, possibly with a constant offset.) It is interesting to note that given the vector sizes

above, we can see that A must have dimensions q x r and b must be a vector of size r.

I will compute A and b using traditional dataflow techniques, based on the prototypical gen and kill

sets of formal dataflow treatments (see chapter 10 of [1], or chapter 17 of [2]). The particular analysis to

be performed is very much like the analysis for constant propagation. Instead of propagating mappings of

variables to constant values, we will propagate mappings of variables to weighted combinations of the inputs.

By defining the appropriate confluence operator (in this case matrix addition) we will be able to determine

if all outputs can be derived with an appropriately weighted combinations of the inputs plus some constant.
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If we can derive the output with the right combination of the inputs, we can then express the filter as a

matrix A and a vector b.

5.2.1 Proposed Optimizations

By recognizing that a filter is LTI and determining A and b for that filter, I hope to be able to implement

one or more of the following transformations.

• Generate very fast straight line C code to improve a monolithic filter which computes some linear

function. Given a filter in matrix form, there are already systems in place to generate this fast C code

[17, 7, 8, 16].

• Convert a computation in time to a computation in frequency using a transformation like x → (A, b)→

y to x → FFT → (A′) → IFFT → y. Even though this looks like a less efficient way to compute

y, in some cases it requires much less computation. In addition, this removes the offset vector b and

therefore might allow me to take advantage of the first optimization in cases where it otherwise would

not apply.

• Compose the work done by several LTI filters automatically, allowing for intra-filter optimizations that

would not be possible given the initial arrangement. This will perform filter fusion also (which is

already implemented for general filters in the compiler), but possibly generating more intelligent code

by using [7] to take advantage of redundant computation.

• Split up the work done by one monolithic filter by breaking A and b up into blocks and computing y

in parallel fashion.

5.3 Example: Combining Linear Filters in a Pipeline

Figure 2 shows how linear filter information could be used to implement pipeline fusion of linear filters.

Pipeline fusion is the process by where a pipeline of filters is fused together to form a single monolithic filter

which does the computation of both filters in its main body. In Figure 2 filters A and B are combined into

a single filter. Filter A pops, pushes and peeks a, b and c data items respectively. Filter B pops, pushes
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Filter A
[A]

a items

Filter A peek(a) pop(b) push(c)
Filter B peek(d) pop(e) push(f)

Filter B
[B]

d items

b items
c items f itemse items

Filter A transforms a items to c items, thus matrix [A] has
dimensions a x c. Likewise, Filter B transforms e items
into f items so  [B] has dimensions e x f.

a

c

e

f

let x = the least common multiple of c and d.

Filter A
[A]

(x/c) * a items

Filter A ' peek((x/c)*a) pop((x/c)*b) push(x)
Filter B' peek(x) pop(x) push((x/d)*f)

Filter B
[B]

x items

(x/c) * b items
(x/d) * f items

Matrix [A'] has dimensions (x/c)*a x x.
Matrix [B'] has dimensions x x (x/d)*f.

[ ](x/c)*a

x

A'

[ ]x

(x/d)*f

B'

][=

[ ]A [ ]B

[ ]A

[ ]A

[ ]A

[ ]0

[ ]0

[ ]0

[ ]0

[ ]0

[ ]0

][
[ ]B

[ ]B

[ ]B

[ ]0

[ ]0

[ ]0

[ ]0

[ ]0

[ ]0

=

Figure 2: Combining pipelines of consecutive filters with equal peek/pop rates
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and peeks d, e and f data items respectively. For this case, we need the fact that peek(B)=pop(B). If filter

A can be represented by matrix A and filter B can be represented by matrix B then we can then combine

the two filters by first expanding them to filters A’ and B’ which can be represented by matrices A′ and B′

which can be multiplied together. The new filter then is represented by A′ ∗ B′, which can then be fed to

other stages if necessary.

6 Related Work

One of the most important linear computations that is done by filters is that of taking the Fast Fourier

Transform (FFT). FFTW[4, 5, 6] produces very fast optimized FFT implementations tuned for specific

hardware platforms. It is very specific for generating fast code that performs the FFT and therefore FFTW

is not of immediate use in more a more general class of programs.

The SPL language[17], a part of the SPIRAL[7] signal processing package, can be used to express DSP

filters as matrices and provides a way to automatically generate fast code to implement DSP algorithms

expressed in matrix form. It also supports composing multiple filters together (eg FFT followed by a DCT).

It also appears to support limited matrix decomposition into the product of sparse matrices which can lead

to fast implementations. Theoretical research into the area of automatically factoring matrices has also been

explored[16]. See [8] for an example of generating a fast FFT implementation using the SPL language.

There have been several attempts in the past to create signal processing design environments that ease the

job of finding more efficient implementations of algorithms. For instance, ADE[3] searches for efficient im-

plementations of signal processing algorithms by using various techniques to limit the combinatorial growth

of implementations while searching for alternative designs. ADE’s goal was to create an integrated environ-

ment for the design of signal processing algorithms, and does not focus on implementation. It can help you

determine what the best implementation of a particular algorithm is in the signal processing domain, but it

does not generate the actual implementation.
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