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ABSTRACT
For almost 40 years, Gray and Putzolu’s five-minute rule has helped
quickly guide system architects to the break-even point between
memory caching and direct local storage access. We believe sim-
ilar rules of thumb are needed for object caches and storage in
disaggregated cloud database system designs. However, it is not
straightforward to adapt the established rules to the cloud as they
presume fixed hardware, while, in the cloud, resources are dynamic
and costs are determined by usage.

This paper reviews requirements driving object caches, analyzes
the design space, defines a cost model, and proposes new rules of
thumb to help system designers determine when caches become
cost-effective for analytical workloads in the cloud. While perhaps
unsurprising, our analysis on AWS shows that caches are beneficial
when a systemmakes (1) two requests per hour for latency-sensitive
workloads, or (2) seven requests per second for non-latency-sensitive
workloads. These results are consistent with and help explain the
near ubiquity of object store caches in cloud analytics systems.

1 INTRODUCTION
Traditionally, deploying database systems required acquiring and
managing large, expensive servers on-premise. These servers fea-
ture a memory and storage hierarchy, including CPU caches, DRAM
memory, HDD and/or SSDs, and sometimes tape. Database systems
apply multiple techniques to efficiently process data using available
hardware. Caches are commonly used to take advantage of the dif-
ferent characteristics of memory and storage, such as cost, latency,
and bandwidth. In this context, previous work on the five-minute
rule [4, 9, 11, 12] reviewed the storage hierarchy every ten years
to determine when data should be cached in DRAM rather than
directly read from slower devices (SSDs/HDDs).

The rise of cloud computing has significantly changed the way
systems are deployed. Cloud services offer on-demand computing
and storage, removing the need for companies to acquire and man-
age their own hardware. Furthermore, the cloud has introduced a
new layer of the storage hierarchy for database systems: object stores.
Every cloud provider offers some flavor of an object store, providing
inexpensive, highly durable networked storage. This durability and
low cost have made object stores ubiquitous in modern cloud-native
databases and data infrastructures [5, 6]. Data lakes and “lakehouse”
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Figure 1: Network bandwidth has increased more rapidly
than local read throughput for all instance types. Greater
network bandwidth coupled with high durability and low
cost of object storage has driven the adoption of disaggre-
gated database architectures and, thus, the need for caching.

architectures often rely on data initially stored in object stores and
offer query services on top of this data.

One can argue that accessing object stores over the network
incurs higher latency and lower bandwidth than directly attached
storage devices, placing them at the bottom of the storage hierar-
chy. In this scenario, attached storage would cache hot data from
object stores. However, advances in cloud storage and networking
have significantly impacted cost-effectiveness, latency variability,
and dynamic workload optimization, challenging these traditional
assumptions. Figure 1 compares the read bandwidth from local
storage (Y-axis) and the read bandwidth from S3 (X-axis) for “stor-
age optimized” EC2 instances available on Amazon Web Services
(AWS). The S3 read bandwidth for im4gn instances is higher than
the local read bandwidth. Other instance types, such as i3en and
is4gen, offer slightly higher local read bandwidth than S3 band-
width but the gap is small and closing over time. In non-storage
optimized instances, network bandwidth often exceeds local stor-
age read bandwidth, and writing to local storage devices tends to
be half as fast as reading, while writing to S3 can match network
bandwidth. These observations might suggest that it is not advis-
able to cache on locally-attached storage, but these devices offer
interesting characteristics:

• Lower Latency: Locally-attached storage avoids network round-
trips and typically has more predictable tail latency than object
stores. Latency-sensitive workloads can often achieve more
robust performance with locally-attached storage.

• Cost: Object stores charge based on the number of requests,
while compute instances with locally-attached storage cost a
flat hourly rate, regardless of how much data is read or written.
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Metric DRAM HDD NVMe SSD
1987 1997 2007 2018 2024 1987 1997 2007 2018 2024 2018 2024

Unit price ($) 5k 15k 48 80 42 30k 2k 80 49 343 589 180
Unit capacity 1MB 1GB 1GB 16GB 32GB 180MB 9GB 250GB 2TB 20TB 800GB 2TB
$/MB 5k 14.6 0.05 0.005 0.0014 83.33 0.22 0.0003 0.00002 0.00001 0.0007 0.00009
Random IOPS (r/w) – – – – - 5 64 83 200 168 / 550 460 k 1,400k/1,550k
Seq bandwidth – – – – – 1 10 300 200 285 2500 7,450/6,900(MB/s) (r/w)

Table 1: Evolution of storage device properties for DRAM, NVMe SSDs, HDD. Extended table from [4]

Given these non-trivial design constraints, it is unclear how to
use locally-attached storage to cache data from object stores while
balancing performance and cost. In the rest of this paper, we revise
the five-minute rule for when it makes economic sense to use a
cache in cloud-native database systems for analytical workloads.
Specifically, we make the following contributions.

• Section 2: Reviews past iterations of the five-minute rule .
• Section 3: Surveys common cloud caching architectures.
• Section 4: Proposes a five-minute rule for the object store caches.
• Section 5: Analyzes the proposal for one cloud provider (AWS).

2 EVOLUTION OF THE FIVE-MINUTE RULE
The five-minute rule was originally conceived in 1987 by Gray
and Putzolu [12] as a practical guideline for sizing buffer pools
based on the frequency of page accesses and the relative cost of
memory. In its simplest form, the 1987 rule suggests caching disk
pages that are re-used at least every 5 minutes. Several subsequent
papers propose refinements as system designs, available hardware,
and relative costs evolved. Gray and Graefe’s [11] 1997 adaptation,
for instance, introduced distinctions between randomly and se-
quentially accessed pages, providing nuanced recommendations for
different access patterns. Subsequent contributions by Graefe [9]
in 2009 extended the rule’s applicability to diverse storage media,
considering factors such as disk and flash storage characteristics.
Another proposed update to the five-minute rule by Appuswamy
et al. [4] in 2019 reflected the evolving landscape of storage tech-
nologies at that time, including time thresholds for data transfer
between various storage mediums, such as DRAM to HDD, DRAM
to SSDs, highlighting the increasing performance differences.
Continued Evolution of Storage Devices. Table 1 shows the
evolution of storage hardware characteristics spanning the last four
decades. The results for 1987, 1997, 2007 and 2018 are taken from
the respective revisions of the five-minute rule [4, 9, 11, 12], and
the results for 2024 are found online1.
Break-even Intervals. The five-minute rule is expressed as break-
even intervals, defined in Equation (1) across various hardware con-
figurations. This formula relies on two key factors: 1) the technology
ratio (first term), which reflects the relative speeds of different stor-
age media, and 2) the economic ratio (second term), which accounts
for the cost differences between cache (DRAM) and disk (HDD,
SSD) access. Using this formula, system designers could quickly

1Accessed 18.07.2024:
DRAM: https://jcmit.net/memoryprice.htm
HDD: https://tinyurl.com/SeagateExosX20
NVMe SSD: https://www.newegg.com/samsung-2tb-990-pro/p/N82E16820147861

identify the expected time between page accesses where caching
the page was economically beneficial.

1000 kB × (page size in kB)−1

read IOPS
× $ per Disk
$ per MB of DRAM

(1)

Equation (1) only includes the $ per per disk, but not its capacity.
This means that calculating the results using the 2 TB HDD (2018)
instead of the 20 TB HDD (2024) will yield very different results.
For example, the HDDs from 2018 and 2024 achieve very similar
IOPS and have a $/MB in the same order of magnitude. However,
the break-even interval for a 2024 HDD is 108 hours, but only 12
hours for the 2018 HDD. This order of magnitude difference is due
to the much higher absolute price of the 2024 HDD.

Although the evolution of storage technologies requires regular
updates to calculate break-even times, the evolution of storage and
network technologies in the cloud requiresmore significant changes
to the rule due to the different factors affecting that environment,
such as the pay-as-you-go model, access latency variability, and
in-cluster caching.

3 CACHING IN THE CLOUD
Before adapting the five-minute rule for the cloud, we first motivate
the metrics of interest by describing several cloud caching architec-
tures. We avoid overwhelmingly complex analysis by focusing on
the design patterns that come with unique trade-offs.

3.1 Cache Architectures
Analytic services deployed on clouds and backed by object storage
use the following strategies: Figure 2:
No cache: The system retrieves data directly from object storage for
every data access. While this is simple both architecturally and op-
erationally, it exposes end users directly to the latency variability of
the underlying object store, and incurs costs that scale linearly with
the number of accesses. We do not know of any major production
system that uses this approach.
Compute local (mem): Figure 2a: Each compute node stores pre-
viously accessed objects in memory. Compute nodes operate in-
dependently and may contain duplicate copies of the same object.
This design provides fast cache access (no network access) and is
operationally simple (no additional configuration or communica-
tion). However, it is expensive due to the cost of memory, and often
has a low cache hit rate when cache contents are rebuilt as new
nodes are added.
Compute local: Figure 2b: Each compute node utilizes a hierarchy
of both memory and locally-attached storage such as SSD to cache
prior object store requests. As in the compute local (mem) cache, the

https://jcmit.net/memoryprice.htm
https://tinyurl.com/SeagateExosX20
https://www.newegg.com/samsung-2tb-990-pro/p/N82E16820147861
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(a) Compute local (mem): Separate in-memory cache on each
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(d) Cache Service: Cache is managed by a separate set of nodes.

Figure 2: Common cloud cache architectures.

nodes manage caches independently, potentially storing duplicate
objects. This design is less expensive than compute local (mem) as
disk / SDD costs less than RAM, but slightly more operationally
complex due to managing persistent storage. This design is found
in systems such as Sokrates / Microsoft SQL Server [3], Amazon
Redshift [13], Snowflake’s virtual warehouse [6], Databricks’ delta
cache [5], as well as in cloud caching vendors like Alluxio [1] and
recent research prototype Crystal [7].
Shared nothing: Figure 2c: Resources on local compute nodes,
such as memory and locally attached SSD, store previously ac-
cessed data from the object store. Unlike the previous compute
local caches, in this design compute nodes collaborate to store non-
overlapping subsets of the objects, e. g., via hash partitioning, and
retrieve objects from other compute nodes. This system is less ex-
pensive than compute local variants as the cache capacity is shared,
but operationally more complex as the nodes must work together
to share and manage the cache state. In addition, this architecture
ties the lifecycle of compute and caches together, making it harder
to elastically scale the cluster in response to changed workloads.
Probably due to complexity, we do not know of any industrial
implementations that use this design.
Cache Service: Figure 2d: Separate nodes with dedicated resources
run a specialized cache service. The cache service offers a unified
interface to object storage, managing individual node contents in a
unified manner. This system is expensive as it requires dedicated
nodes and operationally complex as it requires running a separate
distributed stateful service. This architecture is used for result set
caches as in cross-virtual warehouse caches in Snowflake [6] and
Alluxio [1], as well as metadata caches through Snowflake’s meta-
data service that is based on FoundationDB [14], Google NAPA’s
distributed shared cache [2], Alluxio’s leveled metadata cache [1],
and Crystal’s ring buffer based metadata cache [7].

3.2 Design and Performance Trade-offs
Table 2 summarizes some trade-offs between cache designs:
Latency Variability between object store request and response
is known to be unpredictable [8]. No Cache setups directly expose
systems to object store latency variability. Since cache contents

do not survive node restarts, Compute local (mem) and Compute
local configurations have a significant cache miss rate, and each
cache miss results in variable latency. Shared-Nothing architectures
maintain some cache state as nodes restart, but face variability
from hotspots due to unbalanced cluster loads and the need to
re-balance cache contents. Cache Service architectures provide the
lowest latency variability by decoupling the cache from changes in
compute nodes.
Implementation Complexity includes the cost of implement-
ing, debugging, and maintaining the software system. Obviously,
No Cache systems have no cache implementation cost. Compute
local (mem) and Compute local designs must implement cache evic-
tion policies and resource allocation. In addition, they require data
movement between cache levels and timing policies to execute
operations. Shared Nothing and Cache Service configurations add
more complexities, such as replication policies, distributed cache
consistency, and optimizing network communications.
Operational Complexity describes the ongoing burden of op-
erating distributed systems, such as configuration management,
monitoring, node lifecycle management, and failure analysis. No
Cache and Compute local (mem) configurations require no addi-
tional interactions with the cloud service provider or other nodes,
thus not increasing the operational burden significantly. Compute
local setups have a small additional complexity of provisioning local
storage. Shared Nothing setups require additional cross-node com-
munication and monitoring of that communication. Cache Service
designs typically require full-service management, configuration,
deployment, and monitoring.
Object Store Request Count is directly proportional to cost. No
Cache requires a request for each object access. Compute local (mem)
can reuse objects after the first request. With their larger capacity,
Compute local decreases requests, but each node must still request
each object at least once. Shared Nothing and Cache Service archi-
tectures decrease requests even more by sharing access to objects
requested by one node within the cluster.
Cache Capacity Elasticity is the ability of a cache to increase and
reduce resource usage based on demand. Compute local (mem) and
Compute local configurations offer limited elasticity by changing
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Design Latency
Variability

Implementation
Complexity

Operational
Complexity

Object Store
Request Count

Cache Capacity
Elasticity

No cache ↑↑↑↑↑ None None ↑↑↑↑↑ None
Compute local (memory only) ↑↑↑ ↑ None ↑↑↑↑ ↑
Compute local ↑↑↑ ↑↑ ↑ ↑↑↑ ↑
Shared nothing ↑↑ ↑↑↑ ↑↑ ↑↑ ↑↑↑
Cache Service ↑ ↑↑↑ ↑↑↑↑ ↑ ↑↑↑↑↑

Table 2: Trade-off of different cache architectures illustrated in Figure 2.

resources on each node (scale up). Shared Nothing and Cache Service
architectures can more easily add incremental capacity by adding
new nodes. However, Shared Nothing designs are more constrained
due to sharing resources with computation.

4 FIVE-MINUTE RULE FOR THE CLOUD
Developing a five-minute rule for cloud environments requires a
question in terms of relevant metrics. We propose:How oftenmust
an application access an object to justify caching instead of
directly fetching from object storage, given a latency target?
To answer this question, we determine when the cost of caching,
Equation (2), and the cost without a cache, Equation (3), are equal.

Note that we assume the costs of hosting the application, storing
data in the object store, and the first access is the same in all cir-
cumstances, and thus do not include these costs in our calculations.

𝐶𝑜𝑠𝑡𝑂 𝑓𝐶𝑎𝑐ℎ𝑖𝑛𝑔 = 𝐶𝑜𝑠𝑡𝑂 𝑓𝐶𝑎𝑐ℎ𝑒𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 . (2)

𝐶𝑜𝑠𝑡𝑂 𝑓 𝑁𝑜𝐶𝑎𝑐ℎ𝑒 = 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑏 𝑗𝑒𝑐𝑡𝑆𝑡𝑜𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡

× (𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − 1) .
(3)

Cost of caching is determined by how long the nodes are used,
given the cloud providers’ consumption-based billing model. Costs
also vary by the resources required for cache storage: memory
caches cost more than SSD-based caches for the same capacity,
which in turn costs more than HDD-based caches.

In cloud services, compute node costs typically increase linearly
with storage capacity: If an instance with 𝑋GB SSD capacity costs
𝑌$, an instance with 2𝑋GB SSD capacity costs 2𝑌$. Besides the
instance cost, specific storage options such as network-attached
storage also incur additional fees. For example, in AWS, using EBS
(Elastic Block Storage) for the cache adds an additional monthly
storage cost per GB. Finally, we must account for cache misses.
Each miss requires paying for a new object request from object
storage. Taking these factors into account results in a per instance
cache cost:

𝐶𝑜𝑠𝑡𝐶𝑎𝑐ℎ𝑒𝑆𝑒𝑝𝐼𝑛𝑠𝑡 = (𝐻𝑜𝑢𝑟𝑙𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐺𝐵 + 𝐼𝑛𝑠𝑡𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐺𝐵)
× 𝑆𝑖𝑧𝑒𝐶𝑎𝑐ℎ𝑒𝐼𝑛𝐺𝐵 × 𝐿𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒𝑂𝑓𝐶𝑎𝑐ℎ𝑒𝐼𝑛𝐻𝑜𝑢𝑟𝑠

+𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑏 𝑗𝑒𝑐𝑡𝑆𝑡𝑜𝑟𝑒𝑅𝑒𝑞𝑠 × 𝑁𝑢𝑚𝑅𝑒𝑞𝑠

×𝐶𝑎𝑐ℎ𝑒𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒 .

(4)
Equation (4) assumes that the cache is hosted on a separate

compute node from the application. If the cache and the application
share the same node, we must subtract the application hosting cost:

𝐶𝑜𝑠𝑡𝐶𝑎𝑐ℎ𝑒𝑆𝑎𝑚𝑒𝐼𝑛𝑠𝑡 = 𝐶𝑜𝑠𝑡𝐶𝑎𝑐ℎ𝑒𝑆𝑒𝑝𝐼𝑛𝑠𝑡

− 𝐼𝑛𝑠𝑡𝐶𝑜𝑠𝑡𝑊 𝑖𝑡ℎ𝑜𝑢𝑡𝐶𝑎𝑐ℎ𝑒 .
(5)

Cost without a cache. Equation (3) computes costs linearly from
the number of requests but must be extended to account for la-
tency requirements as well. The Racing Reads technique, explained
in Section 5.2, uses 𝑅𝑒𝑝𝑒𝑎𝑡𝑠𝑇𝑜𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 requests for the
same object to reduce expected latency. This number depends both
on the target latency and the requested object’s size. The cost for
cacheless systems that use Racing Reads is in Equation (6).

𝐶𝑜𝑠𝑡𝑂 𝑓 𝑁𝑜𝐶𝑎𝑐ℎ𝑒 = 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑏 𝑗𝑒𝑐𝑡𝑆𝑡𝑜𝑟𝑒𝑅𝑒𝑞

× (𝑁𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑞𝑠 − 1)
× 𝑅𝑒𝑝𝑒𝑎𝑡𝑠𝑇𝑜𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 .

(6)

Calculating 𝑅𝑒𝑝𝑒𝑎𝑡𝑠𝑇𝑜𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 requires knowing the
latency distribution of requests to read an object of a certain size,
and then choosing the acceptable probability that at least one re-
quest completes within the target latency. Using the latency dis-
tribution, one can calculate the probability, 𝑃 , of reading an object
within the target latency budget from the object store. If there are
𝑛 independent requests for this object, the probability that all of
them take longer than the target is (1 − 𝑃)𝑛 . The probability, 𝑃 ′,
that at least one of the 𝑛 requests reaches the target is therefore
1 − (1 − 𝑃)𝑛 . Solving for 𝑛 yields:

𝑛 = 𝑅𝑒𝑝𝑒𝑎𝑡𝑠𝑇𝑜𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑙𝑜𝑔(1−𝑃 ) (1 − 𝑃 ′) . (7)

Latency-sensitive applications typically use values of 𝑃 ′ such as
99%, and report P99 latency (99 requests out of 100 are within the la-
tency target). When there are no latency requirements, Equation (6)
simplifies to Equation (3).
How to obtain the term values? RepeatsToGuaranteeLatency
is determined by the target latency and request latency distribu-
tion for reading a specific size object. This means that one must
measure the read latency values for specific object sizes on the
target object storage and generate a latency distribution. This is the
only term in the cost calculations that requires prior measurements.
CacheMissRate is a function of the workload and cache capacity,
and can be adjusted to reflect how cache performance affects costs.
NumberOfRequests is the term we solve for to answer the question
posed at the beginning of this section. The other terms in equations
2-6 are obtained from the costs of compute instances and storage
published online by the cloud vendors.
Assumptions. Equation (2) - Equation (6) determine the break-even
infrastructure cost for designs with and without a cache. However,
due to wide variability across organizations, our model does not
account for software engineering or operational costs associated
with caches. We also assume similar cost structures across cloud
providers and that all computation costs for the cache are fixed and
small compared to object store access.
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S3 cost per request 0.0000004$
EBS monthly storage cost per GB 0.08 $

Hourly on-demand compute instance costs
m7g instance with EBS 0.0408 $
m7gd instance with 59GiB NVMe SSD 0.0534 $

Table 3: AWS instance costs (Graviton processors).
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Figure 3: Hourly costs for non-latency-sensitive workloads,
assuming a 100GiB cache with 100% hit rate. No cache re-
quires reading from object store, which increases linearly
with number of requests. Caches require additional resources,
whose cost is fixed per hour irrespective of the number of
requests.

5 EVALUATION
We analyze several scenarios using the cost model from Section 4
to determine the number of requests per hour when caches become
less expensive than direct object storage access. The results are
based on AWS costs, listed in Table 3, and all measurements of
object store access latency are derived from [8].

5.1 Non-Latency-Sensitive Workloads
Batched analytic workloads, such as data preparation pipelines or
billing, have relatively relaxed latency requirements and are typi-
cally optimized for cost and overall throughput. Although queries
must eventually complete, other stages of processing, like complex
joins or string manipulation, often dominate processing, and these
workloads more easily tolerate object store access latency.
Caching Costs.When latency and query robustness are not pri-
mary concerns, designers can compare the costs of accessing S3
directly, Equation (3), with those of using caches, Equation (4) and
Equation (5), and choose the least expensive option. Figure 3 plots
the cost vs requests per hour for different cache configurations
and reading directly from S3, assuming a 100GiB cache size and a
perfect hit rate. Directly accessing S3 is cost equivalent at:
• On-Node Cache (EBS): 25,000 requests per hour, roughly
equivalent to 420 requests per minute or 7 requests per second.

• On-Node Cache (NVMe): 50,000 requests per hour, 840 re-
quests per minute or 14 requests per second.

• Dedicated Cache (EBS): 125,000 requests per hour, 2,000 re-
quests per minute, 35 requests per second.

• Dedicated Cache (NVMe) 225,000 requests per hour, 3,700
requests per minute, 62 requests per second.
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Figure 4: Latency distribution for racing 1MiB reads. pN rep-
resents the Nth percentile: N% of the requests completed
within this time. With a single request, p99 latency is around
180ms, decreases to around 125ms with two concurrent re-
quests and to less than 100ms with 6 concurrent requests.

request size # requests
1MiB 20480
4MiB 94720
8MiB 57600

Table 4: Requests needed to download 10GiB from S3, where
each request finishes in 150ms with 99% probability.

Discussion. Our analysis shows that caching is more expensive
than direct access until a system does at least 7 (repeated) requests
per second. Batch workloads typically read and transform data once
each stage, so unsurprisingly they often simply read from (and
write to) object storage directly, without a cache.

5.2 Latency-Sensitive Workloads
In systems such as streaming databases, time-series database alert-
ing, and interactive analytics platforms, the latency between query
start and result is often critical. We model this importance as query
latency budget and object store access latency usually consume a
significant portion of the total latency budget.
Racing reads. In systems without a cache, one commonly used
technique to reduce latency variability is Racing Reads. Systems
using this technique issue multiple requests for the same object, and
proceed with whichever response arrives first, ignoring any other
responses. As shown in Figure 4, the 99th percentile latency (99
percent of requests complete within the given time), significantly
improves from one to two concurrent requests, from around 180
ms to 145 ms. Additional concurrent requests improve the expected
latency further, but the returns decrease.
Request size. Another factor that affects latency is request size.
Since object stores charge per request rather than per byte, fewer
larger objects are preferable. However, larger objects take longer
to retrieve, reducing the chance of meeting a target latency. Table 4
shows the total number of requests needed to download 10GiB,
where per request latency is 150 ms with a 99% probability, using
various request sizes, based on Equation (7). Surprisingly, given this
latency target, Table 4 indicates that making more smaller requests
is cheaper than making fewer larger ones. Only a small percent
of requests for larger objects complete in the required latency,
necessitating many concurrent reads. Using 4 MiB objects costs
almost 5x more than 1 MiB objects. Interestingly 8 MiB objects only
costs around 3x more than 1 MiB objects: while many concurrent
requests are still needed, fewer objects are required overall.
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Figure 5: Cost of repeatedly reading 1 GiB of data using 1MiB
requests, where per request latency is 100 ms (left) or 1s
(right) with 99% probability. No cache (S3) vs. a 1 GiB block
storage (EBS) or SSD (NVMe) cache with a 95% hit rate.

Caching costs. We use Equation (6) to evaluate cache costs for
latency-sensitive workloads, using 1 MiB requests, the best option
in Table 4. Figure 5 plots the costs for repeatedly reading 1 GiB
data using 1MiB requests that must be completed within either 100
ms or 1 s with 99% probability. We compare costs between S3 (no
caches) and EBS or local NVMe SSD 1 GiB caches with 95% hit rate.
Discussion. For latency-sensitive workloads, racing reads on S3
are very costly. Once a dataset is accessed twice an hour, an EBS-
based cache is more economical. Even the more costly NVMe-based
cache is cost-effective once the data is accessed four times per hour.
Since data for interactive workloads is commonly accessed more
than twice an hour, this result likely explains the prevalence of
caches in interactive systems in the cloud, despite their additional
development, maintenance, and operational costs.

6 OPEN QUESTIONS / FUTURE RESEARCH
We distilled a complex design space into a sentence with many
simplifying assumptions. We suggest revisiting:
Other vendors. Our analysis could be applied to vendors other
than AWS. Since the infrastructure costs for VMs and cloud object
storage are similar between vendors, we do not expect dramatically
different results than what Section 5 presents.
Alternative cloud instances and storage offerings. Including
a broader range of compute instances or storage offerings (such
as different classes of EBS, provisioned IOps, io2 vs gp2, etc.) or
different object store performance tiers, such as S3 Express, would
more fully evaluate the design space.
CPU resource needs. In practice, larger compute instances with
more CPU resources are often required to ensure high utilization
of NVMe SSDs and network bandwidth. It would be interesting to
evaluate the impact such additional constraints have on our model.
Access patterns on popular storage formats.We also assume
uniform object access patterns, but systems using open columnar
storage formats such as Apache Parquet may have two distinct sets
of latency requirements for the metadata and the data pages.
Advanced caching. It would be interesting to model the cost of
more advanced caching techniques, such as data transformations,
materialized views, partial results caching, decompression, on-the-
fly indexes, and shuffling.

Other workloads. In this work, we focused on analytical work-
loads. It would also be interesting to extend our model and analysis
to include other workloads, such as transaction processing, by in-
corporating the impact of write requests in addition to reads.

7 CONCLUSION
To offer guidance for cloud-native databases to optimize storage
and caching strategies in modern cloud infrastructure, we revisit
the 5-minute rule and adapt it to the cloud storage hierarchy. Our
evaluation shows that caches are economical in the cloud after
7 requests per second in non-latency-sensitive workloads and 2
requests per hour in latency-sensitive cases.
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