
LiquidCache: Efficient Pushdown Caching
for Cloud-Native Data Analytics

Xiangpeng Hao
University of Wisconsin-Madison

xiangpeng.hao@wisc.edu

Andrew Lamb
InfluxData

alamb@influxdata.com

Yibo Wu
University of Wisconsin-Madison

wu668@wisc.edu

Andrea Arpaci-Dusseau
University of Wisconsin-Madison

dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau
University of Wisconsin-Madison

remzi@cs.wisc.edu

ABSTRACT
We present LiquidCache, a novel pushdown-based disaggregated
caching system that evaluates filters on cache servers before trans-
mitting data to compute nodes. Our key observation is that data
decoding, not filter evaluation, is the primary bottleneck in exist-
ing systems. To address this challenge, we transcode Parquet data
into a lightweight “Liquid” format optimized for caching and fil-
ter evaluation. This format is co-designed with filter evaluation
semantics to enable selective decoding, late filter materialization,
and encoding-aware filter evaluation, delivering low decoding costs
while preserving high compression ratios. The “Liquid” format ex-
ists exclusively in the cache, allowing easy adoption without break-
ing ecosystem compatibility. Through integration with Apache
DataFusion and evaluation with ClickBench and TPC-H, we demon-
strate that LiquidCache reduces cache CPU time by up to 10× with-
out increasing memory footprint, and reduces network traffic by
two orders of magnitudes compared to non-pushdown systems.

PVLDB Reference Format:
Xiangpeng Hao, Andrew Lamb, Yibo Wu, Andrea Arpaci-Dusseau,
and Remzi Arpaci-Dusseau. LiquidCache: Efficient Pushdown Caching
for Cloud-Native Data Analytics. PVLDB, 14(1): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
https://github.com/XiangpengHao/liquid-cache.

1 INTRODUCTION
Cloud-native analytical systems [6, 8, 11, 13, 26, 30, 35, 39, 63, 71]
employ compute-storage disaggregation. In this architecture, com-
pute nodes fetch data on demand from remote object stores, typ-
ically in Parquet format [37, 79] – the industry standard for ana-
lytical data. Despite disaggregation’s benefits, reading from object
stores incurs high access latency and per-request billing costs [27].

Tomitigate these costs, industry employs disaggregated caching [4,
5, 22, 28, 74] with independently scalable shared cache servers. Yet
this approach creates a critical challenge: compute and cache com-
municate via network, which is can easily become a bottleneck for

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

0 5 10 15 20 25
Time (s)

LiquidCache

Baseline
(Parquet)

Filter eval Decode Decompress Others

Figure 1: Time breakdown of filter pushdown for ClickBench
Q22 –Data decoding and decompression consume over 90% of CPU
time in Parquet, while filter evaluation takes less than 10%.

analytical workloads which often transfer large amount of data.
This network bottleneck ultimately limits the cache servers to pri-
marily caching metadata rather than data [3, 4, 26, 81].

In this paper, we propose a new caching approach that leverages
filter pushdown [7, 16, 18, 23, 36, 55, 65, 75, 76] – a classic database
optimization technique – to reduce network traffic in disaggregated
caching. The approach targets low-latency analytics – dashboards,
interactive queries, LLM knowledge retrieval, and anomaly detec-
tion pipelines – where predicates typically reduce the result set
by orders of magnitude and minimizing retrival latency is a key
system goal. By pushing these filters to computationally-capable
cache servers, we can prune irrelevant data before transmitting it
over the network.

Despite this seemingly simple idea, evaluating filters on cache
servers with limited computing power creates CPU bottlenecks,
particularly when processing Parquet files. Studies show that fil-
ter pushdown to object storage even causes slowdown [51, 77].
Consequently, many cloud-native analytical systems [8, 21] have
disabled filter pushdown for Parquet files, incurring prohibitively
high network costs.

Our study reveals that the main bottleneck in filter pushdown
is data decoding – a CPU-intensive task independent of filter com-
plexity. Data decoding transforms disk-optimized data formats into
memory layouts suitable for vectorized execution. While decoding
simple linear formats like CSV or JSON is straightforward, Parquet
decoding is more complex. Parquet employs sophisticated encod-
ing schemes including nested data structures, cascading encoding,
variable-length fields, and rich metadata for optimizations like data
skipping. These features make Parquet highly efficient for storage
but significantly increase decoding complexity. As shown in Figure
1, data decoding and decompression consume over 90% of baseline
(Parquet) processing time, while actual filter evaluation takes less
than 10%.With Parquet being the predominant format for analytical

https://doi.org/XX.XX/XXX.XX
https://github.com/XiangpengHao/liquid-cache
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

data, cache servers must be able to decode and evaluate filters on
Parquet data efficiently.

We propose LiquidCache, an efficient pushdown-enabled cache
implemented on Apache DataFusion [41] – the state-of-the-art
analytical system for Parquet built on open standards. Our key
insight is to decouple logical data from its physical representation,
where the cache server interprets Parquet data from object storage
and gradually transcodes it into Liquid format. This Liquid format is
co-designed with the filter pushdown logic, combining techniques
like selective decoding, late filter materialization, and encoding-
aware predicate evaluation to achieve significantly lower decoding
cost than Parquet, while maintaining a similar compression ratio.

Rather than requiring a disruptive migration from Parquet to
a new file format for all object storage data – which would break
ecosystem compatibility and slow down adoption – LiquidCache
takes a more pragmatic approach. It transparently transcodes Par-
quet data into “Liquid" format as data is accessed and cached on the
server. By combining fine-grained batch-level transcoding, light-
weight encoding transformations, and asynchronous background
processing, LiquidCache hides the transcoding overhead while de-
livering seamless performance improvements. This incremental
approach allows existing systems to adopt LiquidCache without
modifying their data infrastructure and enables LiquidCache itself
to incorporate future encodings without breaking compatibility.

We performed a rigorous evaluation of LiquidCache on Click-
Bench [19, 20] and TPC-H. The results show that LiquidCache
achieves 10× lower decoding time than Parquet, 4× lower data size
than Arrow, and two orders of magnitude lower network traffic
than non-pushdown cache systems. Our contributions are:

• LiquidCache: a pushdown-enabled, disaggregated cache sys-
tem that is first-of-its-kind for cloud-native analytics built
upon production-grade systems.

• We design a novel LiquidCache format that co-designs with
filter evaluation to effectively reduce the decoding cost.

• We show that LiquidCache can leverage state-of-the-art en-
codings [1, 17, 38] without breaking the Parquet ecosystem,
allowing existing data analytical systems to benefit from our
optimizations without compatibility concerns.

• We explore the design spaces of disaggregated cache, quantify
their trade-offs using ClickBench and TPC-H, and show Liquid-
Cache achieves 10x lower CPU usage than Parquet without
increasing memory usage.

2 BACKGROUND
2.1 Cache for object storage
To reduce object storage latency, caching layers are commonly de-
ployed between compute nodes and object storage. Over time, three
main caching architectures have emerged: private cache, distributed
cache, and disaggregated cache.

The private cache is built inside each compute node, utilizing
spare memory or disk resources to cache data locally. This design is
found in research systems like Crystal [26] and industry solutions
like Amazon Redshift [6], Databricks [22], and BauPlan [70]. While
the private cache is the simplest architecture to implement and
deploy, it suffers from inefficient resource utilization since each

compute node maintains an independent cache, caching duplicate
data when nodes access the same data.

Distributed caching improves resource utilization by using dis-
tributed algorithms to connect multiple compute nodes into a
single logical cache layer. This design is found in systems like
Snowflake [74] and Alluxio [4]. While this approach eliminates
data redundancy, it often requires complex consensus protocols
to ensure data consistency across nodes. Additionally, the query
engine has to carefully migrate data among nodes to maintain data
locality and load balance. These requirements introduce signifi-
cant complexity and performance overhead compared to simpler
caching architectures.

The disaggregated cache represents a modern architectural par-
adigm that fully separates caching infrastructure from comput-
ing resources. In this design, cache servers are independent, dedi-
cated services shared across multiple compute nodes. This approach
has been adopted by major industry systems, including Google’s
Napa [3], FoundationDB [81], and Snowflake [74]. The key advan-
tage of disaggregation is independent scalability – cache capacity
can be expanded by adding memory or storage without impacting
compute resources. However, compute nodes must access the cache
over the network, which can become a performance bottleneck.
This limitation has led many systems to use a disaggregated cache
to store metadata rather than actual data.

2.2 Filter Pushdown
Filter pushdown [16, 18, 75, 76] is a classical optimization technique
in database systems that evaluates predicates early in query execu-
tion. By pushing filters closer to data sources, systems reduce data
processing and transmission volumes by discarding irrelevant rows
before they reach higher query processing layers.

Filter pushdown has evolved across multiple stages of query
execution. At the most basic level, query optimizers implement
filter pushdown as a transformation rule that moves filter operators
closer to data scanning operators in the query plan. This reduces the
volume of intermediate data processed by subsequent operators. Ad-
vanced systems push filters down to specialized storage hardware
like FPGAs [65], DPUs [34], Smart SSDs [23], and SmartNICs [36].
These hardware accelerators contain dedicated computing capa-
bilities to evaluate filters while scanning data, ensuring that only
relevant records are emitted upstream. In modern environments,
major providers have integrated filter pushdown directly into their
object storage services, e.g., Amazon S3 Select [7] and Azure Data
Lake Storage [55] allow filters to be evaluated within the storage
layer before data is transferred to compute nodes.

Despite being a classical optimization technique, filter pushdown
faces several key challenges. First, filter evaluation can be com-
putationally expensive, especially on lower-level hardware with
limited processing capabilities. Second, after filter evaluation, data
is transmitted in an uncompressed in-memory format, which can
be significantly larger than the original compressed data – even
after filtering. While re-compressing the filtered data could help,
this would place an additional computational burden on the already
resource-constrained lower-level hardware.

2

2.3 Apache Parquet and Arrow
Apache Parquet is the industry standard columnar storage format
for analytical workloads. It provides advanced encoding schemes
for efficient data compression, advanced data skipping capabilities,
and extensive ecosystem support across analytics platforms. These
features make it particularly well-suited for cloud-native systems
as an open direct-access format among different analytical usages.

To work with Parquet data, query engines must first transcode
it into an in-memory format, e.g., Apache Arrow. While Arrow
was initially designed to enable zero-copy data sharing between
processes, it has become the predominant in-memory representa-
tion format for analytical processing, offering optimized layouts for
vectorized execution and standardized in-memory data exchange.

2.4 Filter pushdown on Parquet
Evaluating filters against a Parquet file involves four steps: 1. De-
code Parquet metadata to locate relevant data pages needed for filter
evaluation, 2. Decompress the data pages using general-purpose
algorithms like LZ4 or Zstd, 3. Decode the Parquet-encoded colum-
nar data into an in-memory representation, 4. Evaluate the filter
predicates against the decoded in-memory data.

As shown in Figure 1, contrary to common assumptions, filter
evaluation represents only a small fraction of the total processing
time. The dominant cost comes from transcoding Parquet data
into in-memory formats (e.g., Arrow) – a CPU-intensive operation
that has been extensively optimized [79] and must be performed
regardless of the filter predicates. This transcoding overhead is
unavoidable since filters cannot be evaluated directly on Parquet’s
compressed format. Consequently, many cloud storage systems
either do not support filter pushdown on Parquet files [8, 21, 55] or
see degraded performance when attempting it [77].

2.5 Target workloads: low latency analytics
LiquidCache targets low-latency workloads including dashboards,
anomaly detection pipelines, interactive queries, and LLM knowl-
edge retrieval that demand sub-second response time. User stud-
ies show that response times above roughly 500 ms significantly
hinder interactive exploration [50]. Unfortunately, fetching data
from object storage already incurs more than 100 ms of first-byte
latency [27], and metadata reads for formats such as Parquet of-
ten require two network round-trips before execution can even
begin. Large-scale deployments of systems like Dremel [53] and
Presto [69] report orders of magnitude slowdown when data is
accessed over the network. These observations motivate caching
techniques that minimize remote I/O and decoding overhead for
such workloads.

3 LIQUIDCACHE ARCHITECTURE
Recent research has shifted toward memory disaggregation from
compute servers [24, 33, 44, 52, 62, 64], enabling independent scal-
ing of memory and compute resources. Disaggregated caching
implements this vision by separating memory-intensive caching
from compute-intensive processing using commodity hardware.

In this architecture, both cache and compute nodes run on com-
modity elastic compute servers but with different hardware configu-
rations optimized for their roles. Cache servers are provisioned with

LiquidCache
!""##

Compute
!!!"

Compute
!!!"

Compute
!!!"

<1msObject
Store

>100ms

Figure 2: LiquidCache architecture – LiquidCache runs on a
commodity elastic compute server, and is physically close to the
compute servers that handle query execution.

high memory and modest CPU resources, while compute servers
have high CPU andmodest memory allocations. Connected through
modern high-speed networks, this design allows multiple compute
servers to share the same cache server, with each component scaling
independently based on workload demands.

Network bandwidth between cache and compute nodes is often
a critical bottleneck. Filter pushdown addresses this by evaluating
predicates at the cache server, reducing data transmission to com-
pute nodes. These “disaggregated pushdown caches" filter data close
to storage, significantly reducing network traffic and improving
query performance.

This section presents the detailed design of LiquidCache, a novel
disaggregated pushdown cache. We first outline the core system
components and their interactions, then walk through the complete
lifecycle of query execution from initial planning to final results,
lastly discuss the caching mechanisms and policies.

3.1 System components
As shown in Figure 2, LiquidCache is a cache server that sits be-
tween compute nodes and object storage. Object storage is slow,
with first-byte latencies over 100ms [27]. In contrast, LiquidCache’s
cache hits take less than 1 ms because the cache server runs physi-
cally close to the compute nodes.

The cache server reads from any object storage provider. While
some providers allow pushdown filters to object storage, they ei-
ther do not support Parquet [55] or are slower with pushdown
enabled [77]. LiquidCache instead uses common object storage
APIs and supports any storage provider.

The cache server provisions SSD-based elastic storage to store
Parquet data retrieved from object storage. The cache server can
seamlessly provision more elastic storage without downtime when
additional storage capacity is required. The bundled CPU on the
cache server manages network communication between compute
nodes and object storage, and evaluates filters received from com-
pute nodes. However, unlike compute nodes performing computa-
tionally intensive operations, the cache server’s CPU requirements
are minimal and cost-efficient.

Communication between the cache and compute servers occurs
via Arrow Flight, a high-performance network protocol built on
gRPC. Arrow Flight enables zero-copy data transfer by allowing
compute nodes to directly interpret data from network buffers with-
out de/serialization – a major cost in data-intensive systems [78].

3

LiquidCache Compute“school” =
“UW-Madison”

SELECT DISTINCT(“name”)
WHERE “school” = “UW-Madison”

Object
Store Download

1
8

Output
3

Cache4

2

! "
To Arrow5

#
6

#"To Liquid9
10

Eval
7

Networ
k

Transf
er

Figure 3: The life of a query in LiquidCache– Step 9 transcodes
the Parquet into Liquid format in the background, allowing efficient
predicate evaluation on a cache hit.

Compute nodes send SQL queries containing pushdown filters to
the cache, which evaluates the filters and returns matching results.

The compute server functions like any standard data analytical
server. LiquidCache provides a data connector (TableProvider) that
users can easily swap in place of their existing connector. This con-
nector serves as a bridge between object storage and LiquidCache’s
caching system. Behind the scenes, the connector determines which
portions of the query plan should run on the compute server and
which should be offloaded to the cache server. Once the data is re-
ceived from the cache, it performs necessary data transformations
to convert the data into a shape that the rest of the operators expect.
With the disaggregated cache, the compute server is fully stateless
and can be deployed as a standard VM or a serverless function.

3.2 Life of a query
With a disaggregated cache, the cache server and compute server
cooperate to execute a query. As in data lake architecture [13], the
catalog server sends a pair of SQL queries and file locations (on
object storage) to the compute server. A conventional compute
server will download the data from object storage and process the
query on its own hardware. This section discusses the life of a query
of LiquidCache, as shown in Figure 3, starting from a cold cache.
1. Get schema. When the compute server receives a query and
file location, it needs to add the file’s schema to its catalog. While
traditional systems read this directly from object storage, Liquid-
Cache reads the schema from the cache server. If not already cached,
the cache server downloads Parquet metadata from object storage
and then returns the table schema to the compute server.
2. Query planning. After obtaining the schema, the compute
server generates and optimizes a query plan, pushing filter oper-
ators down to the scanning operator. LiquidCache employs stan-
dard filter pushdown strategies without introducing new rules. As
shown in Figure 1 and discussed in Section 2.4, data decoding con-
sumes over 90% of CPU time during filter operations, while filter
evaluation takes less than 10%. Given these findings, LiquidCache
prioritizes optimizing decoding rather than developing complex
filter strategies.
3. Split the query. The compute server then splits the query plan
into the data scanning operator and the remaining operators. In
Figure 3, the data scanning operator corresponds to scanning the
table with the filter “school = UW-Madison”, and the compute
operators correspond to the “DISTINCT” aggregation. LiquidCache
implements a query optimizer rule that decides which operators

should be pushed down to the cache server, and it will encode the
query plan into a protobuf message and send it to the cache server
for execution.
4. Execute the query. The cache server processes the SQL query
with an embedded query engine, first checking for liquid-encoded
data in its in-memory cache. The Liquid format (Section 4) provides
high compression ratios and efficient predicate evaluation. If not in
memory, the cache server checks its local disk cache. As a last resort,
it downloads the data from object storage. For data not already
in Liquid format, the cache server submits a background task to
transcode it, enabling efficient predicate evaluation on subsequent
cache hits. Lastly, the cache server streams the filtered results to
the compute server via Arrow Flight, processing and sending data
batches in parallel.
5. Return results. Finally, the filtered data is streamed back to
the compute server, which continues processing the remainder
of the query plan. Step 9 in Figure 3 shows that the cache server
concurrently transcodes newly fetched Parquet data into Liquid
format so that subsequent queries can evaluate predicates without
repeating the conversion.

3.3 What to pushdown?
Filters. The cache server evaluates filters referencing only columns
from the same table and containing no expensive UDF.
Projections. Column projection is always pushed down because it
is virtually free when scanning Parquet data.
Aggregations. LiquidCache pushes down inexpensive aggrega-
tions such as COUNT, SUM, AVG, MIN, and MAX. Expensive operations
like DISTINCT remain on the compute node to avoid building large
in-memory hash tables on the cache server.
Cost-based pushdown. Currently, LiquidCache always pushes
down the operators above, and more sophisticated cost-based poli-
cies [51, 77] are complementary and left for future work.

3.4 Local mode
Pushing down non-selective filters may increase network traffic
because filtered data is transferred in an uncompressed format.
LiquidCache therefore supports an optional “local mode” in which
selected tables are cached in Liquid format directly on the compute
node. In our current prototype, the user specifies which tables re-
main local; integrating automatic selection based on table statistics
is left for future work.

3.5 Cache mechanisms
Cache Parquet bytes on cache-local disk. On cache misses, the
server downloads the requested data range from object storage
based on the query and Parquet metadata. It merges multiple small
ranges into larger ones to minimize object store requests, which
are billed per request rather than by volume [27]. Users can pre-
populate the cache to avoid cold start delays. When elastic storage
fills up, the cache server either evicts the least recently used files
or expands storage without downtime. Disk space management is
outside this paper’s scope, practical deployments can choose any
caching/eviction policy, or simply provision more elastic storage.
Cache Liquid data in memory. LiquidCache caches each column
in batches of 8192 rows so that queries load only the required

4

pieces. Entries are identified by file name, row group, column index,
and row number. A column-level LRU policy exploits the common
pattern that batches within a column are accessed together while
different columns are independent. Evicted batches are written to
disk using a FlatBuffers [29]-style representation to avoid future
deserialization overhead.
Data caching vs. result caching. LiquidCache caches data rather
than final/intermediate query results. Caching Liquid-encoded data
allows diverse filters to reuse the same cached blocks while avoid-
ing repeated Parquet decoding. Result caching could skip filter
evaluation, but would benefit only identical queries.
Handling new and deleted data. In a typical data-lake deploy-
ment [13], a catalog server orchestrates ingest and compaction.
LiquidCache caches at the granularity of columns within a file, so
when a file is removed from the catalog so is the corresponding liq-
uid column/file. This approach keeps the cache consistent without
a complex invalidation protocol.

4 LIQUID FORMAT
Efficient filter evaluation requires storing data in a format optimized
for filtering operations. Simply caching Parquet data is insufficient,
as it prioritizes compression ratios and sequential scan performance
over filter evaluation efficiency. Instead, LiquidCache takes a novel
approach: it caches the logical data rather than its physical repre-
sentation. This is achieved by actively interpreting data from object
storage and transcoding it into specialized physical representations
optimized for filtering operations.

4.1 Dilemma: Decoding speed vs. memory usage
Decoding consumes significant CPU cycles [38], while DRAM al-
ready accounts for nearly half of data-center cost [44]. Highly com-
pressed formats like Parquet decode slowly but use little memory,
whereas in-memory layouts such as Arrow decode instantly but
quadruple space usage. LiquidCache resolves this tension by co-
designing its encoding with the filter evaluation process. All encod-
ings permit independent decoding of each element so that values
that fail early filters are never materialized. Techniques such as
dictionary encoding and bit packing are combined in a cascade so
that only the minimal representation necessary for the current filter
stage is produced (Section 4.3).

4.2 Liquid data representation
LiquidCache combines several state-of-the-art data encoding tech-
niques for high compression ratios and efficient filter evaluation.
These include FSST [17] for string compression, FastLanes [1] for in-
teger bit-packing, and standard encoding techniques like dictionary
encoding and FoR (frame-of-reference) encoding.

This subsection presents LiquidCache’s current encoding strat-
egy. While we focus on string and integer encodings, LiquidCache
can incorporate any appropriate columnar encoding technique that
preserves independent element decodability, such as those in [38].
The system’s flexible architecture allows dynamic updates to its
encoding chain as new techniques emerge.

4.2.1 Encode strings. As shown in Figure 4, LiquidCache encodes
string arrays in three cascading steps: first use dictionary encoding
to deduplicate the strings, then use bit-packing to compress the

Apache

Arrow

Apache

DataFusion

Apache

Parquet

Arrow

Parquet

Apache

Parquet

Apache

DataFusion

Apache

DataFusion

Apache

DataFusion

Apache

Parquet

Apache

Arrow

Arrow

Parquet

1

3

2

0

3

2

3

Liquid

(Arrow)

Liquid

(Dictionary)

Values
Keys

(u32)

Apache

DataFusion

Apache

Parquet

Apache

Arrow

Arrow

Parquet

01

11

10

00

11

10

11

Values
Keys

(2 bit)

cd

cb

ca

ab

01

11

10

00

11

10

11

Values

Keys

a: Arrow
b: Parquet
c: Apache
d: DataFusion

Liquid

(BitPacked)
Liquid

Symbol table
(shared)

Figure 4: How LiquidCache encodes string arrays – The left-
most diagram shows the Arrow string representation, it will first be
converted to dictionary encoding to eliminate the repeated strings,
and then the keys are compressed with bit-packing based on the
dictionary size, finally the dictionary is compressed with FSST en-
coding. Each of the intermediate representations can be used for
filter evaluation. The corresponding data size and transcoding time
can be found in Section 5.7.

keys, and finally use FSST encoding to compress the dictionary
values.

The key array consists of unsigned integers that reference en-
tries in the dictionary. The bit width needed to encode these keys
is determined by the dictionary size – specifically, ⌈𝑙𝑜𝑔2 (𝑛)⌉ bits
where 𝑛 is the number of unique strings. For example, with 10
unique strings, each key requires ⌈𝑙𝑜𝑔2 (10)⌉ = 4 bits. LiquidCache
leverages FastLanes [1] encoding to efficiently bit-pack these keys
using the minimal required bit width.

For dictionary value compression, LiquidCache employs FSST
encoding [17], which decomposes long strings into shorter sub-
strings and maintains a symbol table mapping these substrings to
compact codes. FSST compression’s effectiveness heavily depends
on its symbol table’s quality – optimal compression is achieved
when the symbol table is trained on the target data. However, con-
structing symbol tables is expensive, and the table itself consumes
storage space, creating a trade-off between compression ratio and
overhead. LiquidCache balances this trade-off by leveraging Par-
quet’s structure. It builds one FSST symbol table per column chunk
using the dictionary page (typically the first page) as training data.
This table is reused to compress all string arrays within that chunk,
amortizing construction cost while maintaining good compression
by training on representative data.

4.2.2 Encode integers. For integer encoding, LiquidCache com-
bines Frame-of-Reference (FoR) and bit-packing techniques. For
each integer array, LiquidCache first determines the minimum
and maximum values. The array is normalized by subtracting the
minimum value from each element to contain only non-negative
integers. This transformation is particularly beneficial for negative
numbers in 2’s complement representation. The normalized values
are then bit-packed using FastLanes encoding, similar to the dic-
tionary key encoding described earlier, except that the integer bit
width is calculated based on the range of values (max-min) rather
than the dictionary size.

4.2.3 Encode floating numbers. For floating-point columns, Liquid-
Cache adopts the ALP scheme [2]. When values are whole numbers,

5

Mask
(3/8)

Align
Pages

Decoded
(8/8)

Parquet Decoding

Mask
(3/8)

Get Cached
Chunk

LiquidCache Decoding

Decoded
(3/8)

Figure 5: LiquidCache’s selective decoding compared to Par-
quet’s decoding – Parquet (left) has to decode an entire page even
if just one element is needed. LiquidCache (right) allows each ele-
ment to be decoded independently.

they are converted to integers using PseudoDecimal [38]; otherwise
ALP applies vectorized compression to the significant bits.

4.2.4 Lossy encoding. Lossy schemes [48, 59, 68] can further reduce
size when applications tolerate small errors. Because LiquidCache
caches the logical equivalent of Parquet files, we currently store only
lossless encodings. Users may, however, apply lossy compression
when generating the Parquet data itself.

LiquidCache encodes data at batch-size level (default to 8192).
This fine-grained encoding strategy enables better compression
ratios, as smaller integer arrays typically exhibit narrower value
ranges requiring fewer bits for encoding. LiquidCache adapts en-
coding parameters based on actual data characteristics rather than
pre-defined schema-level decisions, effectively decoupling logical
data representation from physical storage format.

4.3 Co-design with filter evaluation
The guiding principle is to avoid decoding work whenever possible:
(1) decode late by applying filters before materializing data, and
(2) decode light by evaluating predicates on encoded or partially
decoded values.

4.3.1 Selective decoding. Filter pushdown has two stages: (1) build
filter mask over predicate columns, and (2) build output over pro-
jection columns. Selectively decoding applies the filter mask from
stage 1 to selectively decode the projection columns where the
corresponding bit in the filter mask is true [67]. While selective
decoding has been applied to Parquet in many systems [18, 41], its
benefits are limited by Parquet’s page-based compression scheme.
As illustrated in Figure 5, even when the filter mask selects 3 out of
8 elements, a Parquet decoder must decode the entire page contain-
ing all 8 elements since it cannot decode individual elements within
a page. Therefore, selective decoding only benefits Parquet in cases
where entire pages can be skipped. In contrast, LiquidCache pushes
the selective decoding to its extreme, where an element is decoded
if and only if it passes the previous filters.

4.3.2 Late filter materialization. Late filter materialization takes
one step further by applying selective decoding to the filter evalua-
tion itself (i.e., stage 1). It targets scenarios with multiple chained
filters across different columns – a pattern commonly found in
analytical queries. Figure 6 illustrates late filter materialization in
action. In the eager approach without late filter materialization

Filter
Col 1

Filter
Col 2

Decode Decode

Decode

Eag
er

Late

Filter Filter

Filter Decode

Combine

Combine Filter

(Pa
rqu

et)

(Liquid)

Figure 6: LiquidCache’s late filter materialization compared
to Parquet’s eager materialization – The first row shows the
filter evaluation process of Parquet, and the second row shows
LiquidCache. With two filter columns, Parquet eagerly materialize
both columns, while LiquidCache only materializes the first column
and use the filter mask to selectively decode the second column.

(first row), the system first decodes all filter columns, then evalu-
ates predicates on each column independently, and finally combines
the resulting boolean masks to determine which rows satisfy all
conditions. With late filter materialization enabled (second row),
the system processes columns sequentially – it decodes the first
filter column, evaluates its filter to produce a boolean mask, Then,
this mask is used to selectively decode only the qualifying elements
from the second filter column. This cascading process means each
subsequent column needs to decode progressively fewer elements
as more filters are applied. Late filter materialization reduces both
decoding work and filter evaluations by processing only data that
passed previous filters. LiquidCache leverages bit deposit oper-
ations [46] to accelerate the bit mask manipulations required for
late filter materialization.

4.3.3 Evaluate filters on encoded data. Filter operations can often
be performed directly on encoded data, eliminating decoding when
filter evaluation is encoding-aware. LiquidCache’s string encoding
preserves properties that enable these optimizations. For equality
predicates on string arrays, rather than decoding to find matches,
LiquidCache can encode the search target and perform comparisons
directly on the encoded representations, significantly improving
efficiency. Since LiquidCache uses dictionary encoding as the outer-
most layer for string arrays, the filter evaluation can operate solely
on dictionary values, eliminating the need to decode the values
array while also reducing the number of comparisons because the
value array of the dictionary has unique values.

4.3.4 Evaluate filters on partially encoded data. Not all filter opera-
tions can be evaluated on encoded data. Substring pattern matching,
for instance, requires access to the fully decoded strings. However,
LiquidCache’s cascading encoding strategy (Section 4.2) allows
decoding to proceed only as far as necessary for each filter type.
For example, decoding stops after dictionary values are available
for substring searches, avoiding the overhead of key decoding and
dictionary materialization. For prefix matching, only the initial
bytes of each string need to be decoded. In addition to file evalua-
tion, LiquidCache also transmits the partially encoded data (when
applicable) over the network to reduce the network traffic.

6

Engineering challenges. Filter evaluation happens in the query
engine, while data decoding occurs in format-specific readers. This
separation creates a dependency challenge: readers need knowl-
edge of filter expressions to optimize decoding, which would need
to create reverse dependencies to the query engine (beyond the
forward dependency where query engines rely on readers). Liquid-
Cache avoids this complexity by unifying data representation and
filter evaluation in a single layer. By embedding an extensible query
engine in the cache server that supports all filter expressions, Liquid-
Cache can optimize decoding strategies specifically for each filter
type.

4.4 Efficient transcoding
When LiquidCache reads Parquet files from object storage, it must
transcode them into Liquid format to leverage the abovementioned
optimizations. While transcoding between formats incurs over-
head, LiquidCache employs several key techniques to make this
process highly efficient. This section examines three critical as-
pects of LiquidCache’s transcoding design: (1) on-demand fine-
grained transcoding that only converts data needed by queries, (2)
background transcoding that hides conversion costs, and (3) deep
integration with Parquet’s reading pipeline to minimize overhead.

4.4.1 On demand fine-grained transcoding. Transcoding data be-
tween formats is a well-established practice, commonly seen in ETL
(Extract-Transform-Load) pipelines that transform data between
formats through a dedicated transcoding service. Traditional full-
file transcoding is inefficient since, in most analytical workloads,
only a few columns are frequently accessed.

LiquidCache takes a more fine-grained approach by transcod-
ing data on-demand at column granularity. Only those columns
are transcoded into liquid format when a query requests specific
columns. This selective transcoding is further optimized through
predicate pushdown – LiquidCache only transcodes data batches
that pass filter predicates, avoiding unnecessary work on rows that
will be filtered out. While transcoding does incur an upfront cost,
it is a one-time investment that benefits all subsequent queries
accessing the same data. This aligns well with typical analytical
workload patterns where queries are highly repetitive [72], allowing
the transcoding cost to be amortized across many query executions.

4.4.2 Background transcoding. Rather than blocking query process-
ing while transcoding data from Arrow to Liquid format, Liquid-
Cache performs this conversion asynchronously in the background.
By intelligently scheduling transcoding during periods of lower
CPU utilization, LiquidCache maximizes resource efficiency while
minimizing impact on query performance. This background transcod-
ing approach takes advantage of several common patterns observed
in analytical workloads:

First, query execution frequently involves compute-intensive
operators like joins and aggregations, where compute nodes spend
significant time processing each batch of data before requesting the
next batch from the cache server. During these natural processing
gaps, LiquidCache can efficiently transcode data in the background
without impacting query latency.

Second, when the cache server experiences a miss and must
fetch data from object storage, the orders-of-magnitude slower

object store I/O allows the cache server to transcode previously
fetched batches while waiting for new data. This effectively hides
the transcoding cost behind unavoidable I/O latency.

Third, analytical systems typically exhibit spiky workload pat-
terns [72] requiring CPU over-provisioning to handle peak loads.
LiquidCache exploits these quieter periods to perform transcoding
work efficiently using otherwise idle CPU cycles.

4.4.3 Deep integration with Parquet reading. In addition to the de-
sign optimizations discussed above, LiquidCache also employs sev-
eral engineering optimizations that directly optimize the transcod-
ing process. LiquidCache rewrites the core of the Parquet reader
such that the decoding process is aware of a later transcoding. For
example, LiquidCache implements a new Arrow string represen-
tation called StringView, which allows LiquidCache to reuse the
Parquet decoding buffer as the string buffer for the dictionary en-
coding, which saves multiple memory copies for large string arrays.
Our StringView implementation has been upstreamed to Parquet
and is now the default string representation for DataFusion [31, 32].
As another example, LiquidCache reworked the Parquet decod-
ing pipeline such that it can reuse the decompression buffer for
both predicate evaluation and building output data – saving one
decompression step for the output data.

4.5 Discussion
Comparison with other modern data formats. Modern file
formats such as BtrBlocks [38], LanceDB [42], Nimble [54], and
Vortex [66] address some of the problems that LiquidCache tries to
address. These formats, like LiquidCache, combine various encod-
ings and compression algorithms, but require data sources to adopt
their specific format, breaking the ecosystem that Parquet took
years to build. Even minor updates to Parquet itself have histori-
cally taken years to be accepted and deployed across data systems.
A complete rewrite of the file format is likely slow to adopt and
fails to capture the rapid evolution of data systems. LiquidCache
instead focuses on efficient and non-intrusive transcoding, allowing
easy adoption by existing systems. Unlike existing formats focused
on standalone design, LiquidCache takes a holistic approach by
co-designing data representation with filter evaluation, delivering
superior end-to-end performance.
Ephemeral format vs persistent format. Rather than creating
another fixed file format that will eventually become outdated,
LiquidCache intentionally remains ephemeral and adaptable (hence
"Liquid"), eliminating the need for a stable specification that would
require agreed-upon changes in the ecosystem. This leverages the
unique position of Liquid’s data – only in the cache, and the cache
server is the only producer and consumer of Liquid data, allow-
ing LiquidCache to freely add or remove encodings without any
impact on the rest of the ecosystem. This approach is particularly
valuable given the rapid evolution of data systems over the past
decade, where new encoding/compression algorithms emerge ev-
ery year while ecosystems remain locked into an older format for
compatibility reasons [37].

5 EVALUATION
Our evaluation answers the following questions:

7

• How does LiquidCache’s performance compare to state-of-the-
art caching designs in latency, network usage, CPU time, and
memory usage?

• How does Liquid format compare to established formats like
Arrow and Parquet?

• What overhead does Liquid transcoding introduce, and can Liquid-
Cache mask it from query latency?

• How well does LiquidCache handle diverse real-world analytical
workloads?

5.1 Implementation details
We implement LiquidCache on Apache DataFusion [41], a high-
performance analytical engine consistently ranking among top
performers for Parquet workloads [40]. Our implementation con-
sists of approximately 22k lines of Rust code, with an additional
5k lines contributed to upstream DataFusion, Arrow, and Parquet.
LiquidCache implements a physical optimizer rule that replaces
the Parquet reader with LiquidCache’s reader, enabling integration
with existing systems [11, 30, 35, 39, 42, 71] through minimal code
changes – typically under 10 lines.

5.2 Evaluation setup
We evaluate LiquidCache using ClickBench [19, 20], an industry-
standard analytical benchmark with 15GB (100M rows) of real-
world web analytics data. This benchmark includes many short,
selective queries typical of low-latency workloads. We focus on
queries with complex filter patterns and variable-length fields [61].

Table 1 details characteristics of our selected query subset: query
ID, columns projected, data size processed, filters applied, selectiv-
ity (percentage of rows passing filters), and data types. The queries
span diverse scenarios from single-column filters to complex multi-
column predicates, with selectivities ranging from highly selective
(<0.01%) to broad (13.2%), and data sizes from 0.2GB to 14.8GB.

Experiments run on CloudLab [25] 6525 machines with 16 cores
(32 threads) x86_64, 128GB RAM and SATA SSD, using 10Gbps
network to simulate typical cloud environments. We disabled TLS
encryption and used the default Arrow Flight without compression
to minimize overhead. Each query was executed five times, with
results averaged across the final three runs for warm-up. All la-
tency measurements represent end-to-end execution time from SQL
parsing to result retrieval. Unless otherwise specified, we report
LiquidCache benchmarks on fully transcoded format.

ID # Cols Size # Filters Selectivity Data Types
Q10 2 0.3 GB 1 2.0% String, Int
Q19 1 0.2 GB 1 <0.01% Int
Q20 0 (opt.) 2.7 GB 1 <0.01% String
Q21 2 3.0 GB 2 <0.01% String, Int
Q22 4 5.7 GB 3 0.02% String, Int
Q23 104 14.8 GB 1 <0.01% String, Int
Q31 5 1.5 GB 1 13.2% String, Int

Table 1: Characteristics of selected ClickBench queries – Each
query is described by its ID, number of columns projected, total data
size processed, number of filters applied, selectivity (percentage
of rows that pass the filters), and the data types involved. Q20
originally projects all 104 columns but is optimized to a simple
count after projection and aggregation pushdown.

5.3 Baseline implementations
We implement three representative baselines matching the caching
architecture in Section 2.1, representing key industry approaches:
file serving, Parquet filter pushdown, and Arrow filter pushdown.
LiquidCache: Our proposed cache system combines Parquet’s
memory efficiency with Arrow’s performance through its novel
Liquid encoding format, transcoding data on-the-fly to a represen-
tation tailored for filter evaluation.
Arrow (pushdown): A filter pushdown cache storing data in Ar-
row format rather than Parquet, eliminating Parquet decoding over-
head. It uses embedded DataFusion for filter evaluation, providing
fast data access at a higher memory cost than Parquet-based ap-
proaches.
Parquet (pushdown): A filter pushdown cache evaluating predi-
cates directly on cached Parquet files before network transfer. Like
Arrow (pushdown), it uses embedded DataFusion for filter eval-
uation, transferring matching records to the compute engine via
Arrow Flight. While reducing memory usage significantly, it incurs
CPU overhead from filter pushdown on Parquet.
Parquet (file server): The simplest disaggregated caching form,
serving Parquet files directly from a static file server in the same
cluster. This widely adopted approach requires only a basic HTTP
server with range request support. Despite easy deployment, it
lacks filter pushdown capabilities, necessitating full-column chunk
transfers regardless of query selectivity.

Other approaches exist between Arrow (pushdown) and Parquet
(pushdown), such as pushdown systems caching uncompressed (or
lightly compressed) Parquet data [13]. These systems fall between
the two extremes regarding memory consumption and compute
overhead and are not included here for space reasons.

5.4 Overall results
Our first experiment (Figure 7) compares LiquidCache with the
baselines on four important metrics: latency, network traffic, cache
CPU time, and cache memory usage. The x-axis shows the query
id as described in Table 1, and the y-axis shows the corresponding
metrics; lower is better.

5.4.1 Latency. Figure 7(a) shows Arrow (pushdown) and Liquid-
Cache perform similarly, both significantly outperforming Parquet
(pushdown) and Parquet (file server). Parquet (file server) consis-
tently shows worst performance, with latencies up to 13 seconds.
Parquet (pushdown) performs better but still reaches 2 seconds,
while LiquidCache andArrow (pushdown) never exceed 0.5 seconds.
LiquidCache achieves latency comparable to Arrow (pushdown)
on most queries but shows higher latency on Q20 and Q23, which
involve filters on large string columns requiring LiquidCache to de-
code data before applying filters, while Arrow (pushdown) applies
filters directly on in-memory Arrow data.

5.4.2 Network traffic. Figure 7(b) shows corresponding network
traffic on a logarithmic scale (lower is better).

The three pushdown-enabled systems (LiquidCache,Arrow (push-
down), and Parquet (pushdown)) exhibit similar network traffic
patterns since they transfer only records matching filter predicates.
LiquidCache achieves slightly lower traffic by transferring partially-
encoded data (e.g., dictionary-encoded Arrow) over the network. In

8

Q10 Q19 Q20 Q21 Q22 Q23 Q31
(a) Query latency

0.0

0.5

1.0

1.5

2.0

Q
ue

ry
 la

te
nc

y
(s

) 2s2s 3s 5s 13sLiquidCache
Arrow (pushdown)
Parquet (pushdown)
Parquet (file server)

Q10 Q19 Q20 Q21 Q22 Q23 Q31
(b) Network traffic

10
6

10
8

10
10

N
et

w
or

k
tra

ffi
c

(B
) Parquet (file server)

Network bottleneck!

Q10 Q19 Q20 Q21 Q22 Q23 Q31
(c) Cache CPU time

0.0

10.0

20.0

30.0

C
ac

he
 C

P
U

 ti
m

e
(s

)

0 0 0 0 0 0 0

Parquet (pushdown)
Cache CPU bottleneck!

Q10 Q19 Q20 Q21 Q22 Q23 Q31
(d) Cache memory usage

0

10

20

30

C
ac

he
 m

em
 u

sa
ge

 (G
B

)

Arrow (pushdown)
Cache memory bottleneck!

Figure 7: ClickBench results comparing LiquidCache with three baselines (lower is better). Parquet (file server) is limited by
network traffic, Parquet (pushdown) by CPU usage, and Arrow (pushdown) by memory footprint; LiquidCache avoids all three bottlenecks.

contrast, Parquet (file server) transfers orders of magnitude more
data by sending entire unfiltered Parquet chunks. This gap is par-
ticularly pronounced for highly selective queries (Q19-Q23), where
pushdown systems transfer only small fractions of records. The
difference narrows for less selective queries (Q10, Q31), where most
data passes filters. Excessive network traffic saturates bandwidth
and incurs substantial CPU overhead in cache and compute nodes’
network stacks for packet processing.

5.4.3 CPU time on cache server. Cache servers with limited CPU
power struggle with computationally intensive Parquet decoding,
as noted in Section 2.4. We instrumented our implementation to
measure CPU time consumed by pushdown operations, including
decompression/decoding and filter/aggregation evaluation.

Figure 7(c) compares the total CPU core time consumed by each
system on the cache server. Parquet (pushdown) spends signif-
icantly more CPU time than other baselines since it must fully
decode Parquet data on the cache server. In contrast, Parquet (file
server) uses minimal CPU, simply serving files without processing.
Among pushdown-supporting systems, Arrow (pushdown) is most
efficient since it operates directly on in-memory data without de-
coding. LiquidCache achieves comparable CPU efficiency to Arrow
(pushdown) despite working with compressed data. This efficiency
stems from Liquid’s faster decoding scheme (Figure 10) and Liquid-
Cache’s ability to skip unnecessary decoding through tight filter
pushdown integration (Figure 13).

5.4.4 Cache memory consumption. We analyze cache memory us-
age across different queries. For fair comparison, each experiment
begins with an empty cache and reports memory used for caching,
excluding runtime data structures.

As shown in Figure 7(d), Arrow (pushdown) has the highest
memory usage, while LiquidCache maintains a memory footprint
comparable to Parquet. For Query 23 alone, Arrow consumes more
than 30 GB of cache memory. Parquet variants (pushdown and
file server) show identical memory usage as they cache the same
compressed Parquet data. LiquidCache achieves comparable or
better memory efficiency than Parquet, thanks to its advanced
cascading encoding scheme. Despite its high compression ratio,

LiquidCache preserves random access capabilities to individual
data elements, as demonstrated in Figure 10.

5.5 TPC-H results
Although LiquidCache targets short, selective queries, we also
benchmark TPC-H to evaluate larger-than-memory workloads. We
run the scan-heavy queries (Q4,6,11,12,14,15,16,20) at scale factor
100, totaling 100 GB data, with only 24GB max system memory,
including 8GB cache and 16GB for runtime data structures (e.g.,
join hash tables). We additionally compare to Apache ORC [10].
Converting the dataset using the same Snappy compression yields
a slightly better ratio for ORC (32%) than Parquet (34%), confirming
prior observations [49, 79].

Q4 Q6 Q11 Q12 Q14 Q15 Q16 Q20
0.0

5.0

10.0

15.0

20.0

Q
ue

ry
 la

te
nc

y
(s

) 27s 24s 34s 65s 29s

8.6GB 22.7GB 3.2GB 20.4GB 25.7GB 41.7GB 2.3GB 23.1GBData size:

Liquid
Parquet
ORC
Arrow

Figure 8: TPC-H SF100 (100GB data) with 8GB cache. Data
size indicates query scan size, excluding runtime structures.
Arrow is best when data fits in cache and worst otherwise. Parquet
outperforms ORC due to better query engine integration. Liquid
consistently delivers the best performance when the input does not
fit in the cache.

Figure 8 shows the TPC-H SF100 results benchmarked with
8GB data cache, the y-axis shows the query latency, and data sizes
indicate the corresponding query’s data size, excluding runtime
structures. Queries have varying data sizes, from 2.3GB to 41.7GB.
When the data size fits in cache, Arrow performs the best (similar
to Liquid) and performs the worst otherwise. Although Parquet and
ORC have similar compression ratio, Parquet generally outperforms
ORC by a large margin due to its better query engine integration
– both DataFusion and DuckDB best support Parquet while the
former has minimal ORC support and the latter has no ORC support

9

– highlighting the importance of query engine and data format co-
design. Liquid consistently performs the best, thanks to its efficient
encoding that reduces data size and filter-aware decoding that skips
unnecessary decoding and file reads.

These results highlight a key limitation of Arrow (pushdown)
for disaggregated caching: Its substantial memory requirements
make it prohibitively expensive to deploy at scale on cache servers.
In contrast, LiquidCache’s memory footprint closely matches Par-
quet’s efficiency while providing efficient filter evaluation, enabling
a practical transition from Parquet-based to Liquid-based caching
without increasing memory costs.

5.6 Decoding revisited

0 1 2 3 4 5 6 7 8
Time (s)

Theoretical
optimal

Arrow
(pushdown)

LiquidCache

Parquet
(pushdown)

27s27s

Filter eval Decode Memory stall

Figure 9: Decomposed CPU time spent on cache server for
ClickBench Q22. LiquidCache spends similar total time as Arrow
(pushdown), but primarily on decoding compressed data, while
Arrow (pushdown) suffers from memory stalls due to scanning 4×
more uncompressed data.

We revisit LiquidCache’s decoding time and how it compares
to the theoretical optimal. We sampled the cache server execution
and categorized time into: filter evaluation, decoding, and memory
stall. Filter evaluation represents the useful time spent evaluating
the filter. Decoding is the time spent converting data to Arrow
format for vectorized execution. Memory stall is time spent waiting
for data to be ready for CPU execution, including cache misses,
memory allocation/copying for filtering, etc.

As shown in Figure 9, LiquidCache significantly reduces overall
CPU time from 27s to 2.7s, reaching a similar overall time as Ar-
row (pushdown). While LiquidCache and Arrow (pushdown) spend
comparable total execution time, they exhibit markedly different
performance characteristics. LiquidCache dedicates most process-
ing time to efficiently decoding compressed data. Thanks to its
filter-pushdown co-design (Section 5.9), it only decodes the subset
of data that passes filters. In contrast, Arrow (pushdown) experi-
ences significant memory stalls due to operating on uncompressed
data that is 4× larger. Both systems achieve similar filter evalua-
tion times, approaching the theoretical optimum – which would
evaluate all filters directly on encoded data, eliminating decoding
overhead while maintaining a compact memory footprint.

5.7 Transcoding cost
Instead of requiring all data sources to produce Liquid-encoded
data, LiquidCache progressively transcodes upstream Parquet data
into Liquid on the fly, facilitating integration into existing systems.
This section analyzes direct transcoding costs among Liquid’s dif-
ferent data representations, then demonstrates how LiquidCache

Parquet Liquid
(Arrow)

Liquid
(Dictionary)

Liquid
(BitPacking)

Liquid
0

5

10

D
at

a
si

ze
 (G

B
)

2.4GB

12.9GB

5.0GB 4.7GB

2.0GB4164.0ms

10336.8ms

2180.2ms

784.1ms

7.5ms

7.1ms

9101.7ms

1203.0ms

Transcoding time
Page access
Random access

Figure 10: Memory usage and transcoding cost of “Title” col-
umn of the ClickBench – the largest column in the dataset.
The bar height indicates the encoded data size, arrows denote
transcoding time. Parquet only allows page-level access, while the
rest of the encodings permit random element access.

effectively hides these costs from the critical query execution path
through background processing.

Figure 10 presents a detailed analysis using the "Title" column
from ClickBench – the dataset’s largest column. The figure shows
memory consumption (y-axis) for different encoding formats (x-
axis), with arrows indicating transcoding times between formats.
While Parquet restricts access to page-level granularity, all other
encodings support random access to individual elements. Our eval-
uation reveals several key findings:
• Liquid’s fully encoded format achieves compression ratios com-

parable to Parquet while preserving random access capabilities
• Encoding Liquid takes similar time as encoding Parquet, but

decoding Liquid is over 2× faster than decoding Parquet.
• Dictionary encoding provides significant compression (>2×),

matching the compression gains from Liquid (BitPacking) to
full Liquid, but with 4× longer encoding time

• BitPacking provides a further 6% compression and encodes more
than 300× faster than dictionary encoding

2 4 6 8 10 12 14
Time since background transcoding starts (s)

0

4

8

12

16

M
em

or
y

us
ag

e
(G

B
)

LiquidCache Arrow (pushdown)

0

100

200

300

400

Q
ue

ry
 la

te
nc

y
(m

s)

Latency diff (20%)

Memory diff (4x)

Figure 11: LiquidCache’s latency andmemory usage on Q21 –
LiquidCache gradually transcodes Arrow into Liquid in background,
avoiding latency spikes on the critical path of query processing.

We analyze how LiquidCache handles transcoding costs during
query execution using Q21 from ClickBench as a case study. This
query contains multiple complex filters and demonstrates typical
transcoding patterns observed across other queries. We restrict
background processing to only four threads to simulate realistic
cache server conditions with limited CPU resources. Real systems
can use all idle cores for transcoding when under-loaded – a typical
pattern in cloud analytical systems [72].

10

Figure 11 illustrates the relationship between transcoding progress,
memory usage, and query latency for both LiquidCache and Arrow
(pushdown). The x-axis represents time elapsed since transcoding
begins, while the left and right y-axes show memory consumption
and query latency, respectively. The shaded area represents the
difference between LiquidCache and Arrow (pushdown).

On cache misses, LiquidCache first decodes Parquet data into
Arrow format, then queues Arrow-to-Liquid transcoding as a back-
ground task while immediately proceeding with query execution.
As background transcoding progresses, memory usage steadily
decreases, achieving a 4× reduction compared to Arrow format,
while query latency increases by only 20%. As discussed in Sec-
tion 4.4, LiquidCache’s design ensures transcoding never blocks
the critical query execution path, as queries can operate on any
intermediate data without waiting for transcoding to complete. The
near-identical initial query performance between LiquidCache and
Arrow (pushdown) confirms this non-blocking behavior.

5.8 Cold run latency
We analyze how LiquidCache’s transcoding process affects query
latency, particularly during initial execution when transcoding
occurs concurrently with query processing.

Figure 12 compares execution latency between LiquidCache and
baseline Parquet across different storage devices. The left region
displays cold run latency, while the right shows stabilized warm run
latency. Storage devices range from remote (S3-far: cross-continent
us-west to eu-central) to local (Memory: kernel page cache). Inter-
mediate options include S3/S3-express (nearest region: Nevada to
Oregon), MinIO (same cluster), and SSD (locally attached storage).
The y-axis shows latency with a horizontal line indicating transcod-
ing time. LiquidCache (blocking) disables background transcoding,
sequentially processing one batch at a time.

For slow storage (non-memory devices), execution is IO-bounded,
allowing LiquidCache to overlap IO stalls with CPU-intensive
transcoding. Transcoding time remains negligible compared to IO
time, sometimes even smaller than network variance. With back-
ground transcoding, LiquidCache achieves near-identical latency
to direct Parquet reads.

Transcoding overhead becomes visible when storage throughput
exceeds transcoding throughput. Reading from the kernel page
cache shows transcoding time exceeding total execution time. How-
ever, for typical LiquidCache deployments with network-attached
storage, IO time dominates transcoding overhead and wastes oth-
erwise idling CPU.

5.9 Ablation study
We analyze how each decoding optimization described in Section 4.3
contributes to overall performance. Using the same experimental
setup, we selectively enable optimizations one at a time to measure
their impact.

"Liquid fully decoded" decodes entire arrays into Arrow format
even when accessing single elements - a coarser granularity than
Parquet’s page-level decoding (Figure 13). It outperforms Parquet
(pushdown) on single-filter queries like Q20, where full-column
decoding is necessary because Liquid data decodes faster than
Parquet (Figure 10). Selective decoding provides significant benefits

S3-far S3 S3-express MinIO SSD Memory
0.0

10.0

20.0

Q
ue

ry
 la

te
nc

y
(s

)

Parquet
(781 ms)

Liquid
(358 ms)

Cold run Warm

Transcoding
CPU (2.2 s)

Parquet LiquidCache (blocking) LiquidCache

Figure 12: Impact of transcoding overhead. Baseline Par-
quet reads directly from files. LiquidCache (blocking) con-
verts one batch at a time, whereas LiquidCache overlaps
transcoding with I/O. Storage devices: S3-far (cross-continent),
S3/S3-express (nearest region), MinIO (same cluster), SSD (local),
Memory (page cache).

Q10 Q19 Q20 Q21 Q22 Q23 Q31
Query ID

0

1000

2000

Q
ue

ry
 la

te
nc

y
(m

s)

7s 7sParquet (pushdown)
Liquid fully decoded
+Selective decode
+Late materialization
+Eval on encoded

Figure 13: Ablation study of LiquidCache’s decoding opti-
mizations vs Parquet (pushdown) as the baseline.

when constructing output data using filter evaluation masks to
decode only relevant data. This is particularly effective for queries
with selective filters (e.g., Q21, Q23). However, even for selective
queries like Q22, it sees limited benefit as they are bottlenecked
by the filter evaluation phase, highlighting the importance of late
filter materialization.

Parquet Full +Selective +Late +Eval on
(pushdown) decode decode material. encoded

34.1s 19.3s 13.1s (-32%) 5.0s (-61%) 0.4 s (-91%)
Table 2: Ablation study based on a variation of Q22. Eval on
encoded data shows more than 98% improvement over baseline
Parquet (pushdown).

Filtering directly on encoded data requires filter expressions to
be compatible with the encoding scheme (e.g., equality filters on
strings). While this optimization shows modest benefits in our eval-
uation, we demonstrate its potential impact through an additional
experiment on a variation of Q22 with compatible predicates on
large columns. As shown in Table 2, this achieves an 11× improve-
ment over late filter materialization alone, suggesting significant
performance gains when applying this technique to larger columns.

5.10 Cache dynamics
We evaluate LiquidCache’s cache reuse behavior across different
filter patterns and cache management operations. Using a synthetic
workloadwith identical string columnsA and B, wemeasure latency
from a cold cache with data stored on a local SSD.

11

Operation Lat (ms)

1. A = Madison 5909
2. A = Utah 10
3. A > Madison 236
4. Flush cache to disk
5. A ≠ Utah 374

Operation Lat (ms)

6. B = Madison 5648
7. A like ‘%Utah%’ & B ≠ Utah 266
8. A = Utah 20
9. Delete cache
10. A = Utah | B = Madison 10910

Table 3: LiquidCache latency following different operations.
Operations are executed in the order of the table. The bolded
filters can not be evaluated on encoded data and must be
decoded first.

Table 3 demonstrates LiquidCache’s cache behavior across dif-
ferent operations. Operation 1 represents a cache miss requiring
SSD data loading and Liquid transcoding. Operation 2 hits cache
despite different filters, enabling encoded data evaluation without
decoding. Operation 3 introduces a new filter type requiring prior
decoding. After disk flush, operation 5 loads data in Liquid format,
allowing encoded evaluation. Operation 6 loads a new column with
latency similar to operation 1. Operation 10 loads and transcodes
both columns A and B following their deletion.

LiquidCache only transcodes once, and all filter operations can
be applied on the transcoded data with efficient filter evaluation.
New data can be loaded to the cache, and old transcoded data can
be flushed to disk without losing the transcoding progress.

5.11 Cases for non-pushdown
Pushdown transfers filtered but uncompressed data over the net-
work, which can exceed the compressed unfiltered data size when
filters are non-selective. Theoretically, pushdown benefits require
filter selectivity below the data compression ratio. While this con-
dition typically holds, some workloads violate it. ClickBench Q27
demonstrates this case with 99% filter selectivity and 31% compres-
sion ratio, where LiquidCache performs 3× slower than Parquet
(file server). Adaptive pushdown could address this by dynamically
deciding filter pushdown based on cardinality estimation, which
we leave for future work.

6 RELATEDWORK
Data Lakehouse. Modern data analytics have shifted from on-
premise to cloud-native Lakehouse architectures [12, 13, 56], where
data is stored in object storage using open direct-access formats like
Parquet rather than proprietary engine-specific formats. While this
architectural shift enables greater flexibility and interoperability, it
creates new challenges for modern query engines [15, 40, 58, 60]
that must efficiently process remote Parquet data. LiquidCache
is an important component in Lakehouse architecture that allows
query engines to efficiently evaluate filters on Parquet data with low
latency by sending the filtered data to the query engine, reducing
CPU and network costs.
Modern encoding and columnar file formats. Since the initial
release of Parquet in 2013 [73], many new encoding schemes [1, 2,
17, 38, 43, 45, 47] have been proposed to improve its compression
and decoding efficiency. However, introducing these new encoding
schemes to Parquet would break backward compatibility, and the
ecosystem has effectively locked in [37] to aminimal set of encoding
schemes that are well-supported by major query engines.

File formats like Vortex [66], Nimble [54], and BtrBlocks [38]
have been proposed to replace Parquet, even Parquet itself is evolv-
ing to modernize [9]. However, adopting these new formats re-
mains slow due to the same compatibility concerns. Learning from
these lessons, LiquidCache takes a pragmatic approach by non-
intrusively and progressively transcoding Parquet data into a format
tailored for query engine needs, while maintaining compatibility
with existing systems.
Resource disaggregation The disaggregation of compute and
storage has proven highly successful in modern cloud platforms [6,
22, 35, 74]. Building on this success, researchers and industry have
been exploring ways to disaggregate further compute and memory
resources. Several systems like LegoOS [64], TPP [52], FaRM [24],
AIFM [62], Pond [44], Redy [80], and Hao et al. [33] have inves-
tigated various software architectures for disaggregated memory
systems. However, these approaches typically rely on specialized
hardware such as RDMA or CXL to achieve the high network band-
width required for effective memory disaggregation. LiquidCache
takes a different approach. Rather than physically separating DRAM
from compute resources, it implements a logical disaggregation of
software components. By decoupling the memory-intensive cache
from CPU-intensive compute, LiquidCache enables independent
scaling of these components while maintaining high performance
without requiring specialized hardware.

7 FUTUREWORK
LiquidCache is a first step toward a fully disaggregated caching
architecture. Several extensions remain:
Substrait query plans. LiquidCache currently relies on DataFu-
sion’s internal plan format. Supporting the Substrait would allow
Spark and DuckDB to share the same cache.
More efficient cache memory management. LiquidCache uses
a simple LRU policy today, but prior work shows that conventional
policies perform poorly for analytical workloads [14, 57].
Support for additional pushdown. Beyond projection, filtering,
and simple aggregation, future versions could push down joins or
employ sideways information passing to reduce traffic further.
Optimizing non-selective filters. For highly non-selective pred-
icates, pushing filters down can increase network traffic. Future
work could dynamically decide whether to push down filters based
on cardinality estimates.

8 CONCLUSION
This paper presents LiquidCache, the first practical disaggregated
cache system that achieves low network traffic, low CPU usage,
and low memory consumption. LiquidCache is based on the key
observation that data decoding – not filter evaluation – is the bot-
tleneck in filter pushdown. LiquidCache addresses this issue by
co-designing the Liquid format with filter pushdown semantics to
reduce data decoding overhead dramatically. Rather than requiring
existing systems to migrate their data, LiquidCache transparently
and incrementally transcodes Parquet data into its optimized format.
Our comprehensive evaluation on ClickBench demonstrates that
LiquidCache delivers 10x lower CPU usage than state-of-the-art
systems without increasing memory usage.

12

REFERENCES
[1] Azim Afroozeh and Peter Boncz. 2023. The fastlanes compression layout: Decod-

ing> 100 billion integers per second with scalar code. Proceedings of the VLDB
Endowment 16, 9 (2023), 2132–2144.

[2] Azim Afroozeh, Leonardo X Kuffo, and Peter Boncz. 2023. Alp: Adaptive lossless
floating-point compression. Proceedings of the ACM on Management of Data 1, 4
(2023), 1–26.

[3] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang Chen, Ming
Dai, et al. 2021. Napa: Powering scalable data warehousing with robust query
performance at Google. Proceedings of the VLDB Endowment 14, 12 (2021), 2986–
2997.

[4] Alluxio. 2024. Alluxio - Data Orchestration for AI and Analytics. Alluxio, Inc.
https://www.alluxio.io A distributed cache platform that accelerates AI and
analytics workloads by providing high-speed data access across different storage
systems, offering up to 4x faster AI model training and 8 GB/s throughput per
client.

[5] Amazon Web Services. 2024. Amazon ElastiCache for Valkey and for Redis OSS.
https://aws.amazon.com/elasticache/redis/ Accessed: August 2024.

[6] Amazon Web Services. 2024. Amazon Redshift - Cloud Data Warehouse. Amazon
Web Services, Inc. https://aws.amazon.com/redshift/ A cloud data warehouse ser-
vice offering SQL analytics at scale with features including serverless computing,
zero-ETL integration, and ML capabilities.

[7] Amazon Web Services. 2024. Querying data in place with Amazon S3 Select. Ama-
zon Web Services. https://docs.aws.amazon.com/AmazonS3/latest/userguide/
selecting-content-from-objects.html Part of the Amazon Simple Storage Service
(S3) User Guide.

[8] Amazon Web Services. 2024. Use S3 Select with Spark to improve query per-
formance. https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-
s3select.html. Amazon EMR Release Guide.

[9] Apache Parquet. 2024. Page Index - Apache Parquet. https://parquet.apache.
org/docs/file-format/pageindex/ Accessed: 2025-02-24.

[10] Apache Software Foundation. 2013. Apache ORC: Optimized Row Columnar file
format for big data. https://orc.apache.org/. Accessed: 2025-06-10.

[11] Apache Software Foundation. 2025. Apache DataFusion Comet. https://github.
com/apache/datafusion-comet A high-performance accelerator for Apache Spark
built on Apache DataFusion.

[12] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
et al. 2020. Delta lake: high-performance ACID table storage over cloud object
stores. Proceedings of the VLDB Endowment 13, 12 (2020), 3411–3424.

[13] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse:
a new generation of open platforms that unify data warehousing and advanced
analytics. In Proceedings of CIDR, Vol. 8. 28.

[14] Tahir Azim, Manos Karpathiotakis, and Anastasia Ailamaki. 2017. Recache:
Reactive caching for fast analytics over heterogeneous data. (2017).

[15] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, AnkurDave, ToddGreenstein, Shant Hovsepian, Ryan Johnson, Arvind
Sai Krishnan, et al. 2022. Photon: A fast query engine for lakehouse systems. In
Proceedings of the 2022 International Conference on Management of Data. 2326–
2339.

[16] Michał Bodziony, Rafał Morawski, and Robert Wrembel. 2022. Evaluating push-
down on nosql data sources: experiments and analysis paper. In Proceedings of
the International Workshop on Big Data in Emergent Distributed Environments.
1–6.

[17] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proceedings of the VLDB Endowment 13, 12 (2020), 2649–2661.

[18] Boudewijn Braams. 2018. Predicate pushdown in parquet and Apache spark. Ph.
D. dissertation (2018).

[19] ClickHouse. 2022. ClickBench: A Benchmark For Analytical Database Manage-
ment Systems. https://benchmark.clickhouse.com. Website. Accessed: 2025-02-
17.

[20] ClickHouse. 2022. ClickBench: A Benchmark for Analytical Databases. https:
//github.com/ClickHouse/ClickBench. GitHub repository. Accessed: 2025-02-17.

[21] Databricks. 2024. Amazon S3 Select. https://docs.databricks.com/aws/en/
connect/external-systems/amazon-s3-select. Databricks Documentation.

[22] Databricks. 2024. Optimize performance with caching on Databricks. Databricks,
Inc. https://docs.databricks.com/aws/en/optimizations/disk-cache Documenta-
tion describing Databricks disk caching feature for accelerating data reads by
creating copies of remote Parquet data files in nodes’ local storage.

[23] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park,
and David J DeWitt. 2013. Query processing on smart ssds: Opportunities and
challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. 1221–1230.

[24] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. {FaRM}: Fast remote memory. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). 401–414.

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.
2019. The design and operation of {CloudLab}. In 2019 USENIX annual technical
conference (USENIX ATC 19). 1–14.

[26] Dominik Durner, Badrish Chandramouli, and Yinan Li. 2021. Crystal: a uni-
fied cache storage system for analytical databases. Proceedings of the VLDB
Endowment 14, 11 (2021), 2432–2444.

[27] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud Ob-
ject Storage for High-Performance Analytics. Proceedings of the VLDB Endowment
16, 11 (2023), 2769–2782.

[28] Kira Duwe, Angelos Anadiotis, Andrew Lamb, Lucas Lersch, Boaz Leskes, Daniel
Ritter, and Pınar Tözün. [n.d.]. The Five-Minute Rule for the Cloud: Caching in
Analytics Systems. ([n. d.]).

[29] Google and contributors. 2014. FlatBuffers: Memory Efficient Serialization Li-
brary. https://github.com/google/flatbuffers. Accessed: 2025-06-10.

[30] GreptimeTeam. 2025. GreptimeDB. https://github.com/GreptimeTeam/
greptimedb An open-source, cloud-native, unified time series database for
metrics, logs and events, supporting SQL/PromQL/Streaming.

[31] Xiangpeng Hao and Andrew Lamb. 2024. Using StringView / German Style
Strings to Make Queries Faster: Part 1- Reading Parquet. Apache DataFu-
sion. https://datafusion.apache.org/blog/2024/09/13/string-view-german-style-
strings-part-1/ Apache DataFusion Blog.

[32] Xiangpeng Hao and Andrew Lamb. 2024. Using StringView / German Style
Strings to Make Queries Faster: Part 2 - String Operations. Apache DataFu-
sion. https://datafusion.apache.org/blog/2024/09/13/string-view-german-style-
strings-part-2/ Apache DataFusion Blog.

[33] Xiangpeng Hao, Xinjing Zhou, Xiangyao Yu, and Michael Stonebraker. 2024.
Towards Buffer Management with Tiered Main Memory. Proceedings of the ACM
on Management of Data 2, 1 (2024), 1–26.

[34] Jiasheng Hu, Philip A Bernstein, Jialin Li, and Qizhen Zhang. 2024. DPDPU:
Data Processing with DPUs. arXiv preprint arXiv:2407.13658 (2024).

[35] InfluxData. 2025. InfluxDB. https://github.com/influxdata/influxdb Scalable
datastore for metrics, events, and real-time analytics.

[36] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov,
Dejan Milojičić, and Gustavo Alonso. 2021. Farview: Disaggregated memory
with operator off-loading for database engines. arXiv preprint arXiv:2106.07102
(2021).

[37] Laurens Kuiper. 2025. Query Engines: Gatekeepers of the Parquet File Format.
DuckDB Foundation. https://duckdb.org/2025/01/22/parquet-encodings.html
Accessed: 2025-02-17.

[38] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: efficient columnar compression for data lakes. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–26.

[39] LakeSail. 2025. Sail. https://github.com/lakehq/sail A computation frame-
work to unify batch processing, stream processing, and compute-intensive (AI)
workloads.

[40] Andrew Lamb. 2024. Apache DataFusion is now the fastest single node engine
for querying Apache Parquet files. https://datafusion.apache.org/blog/2024/11/
18/datafusion-fastest-single-node-parquet-clickbench/. Accessed: 2025-02-17.

[41] Andrew Lamb, Yijie Shen, Daniël Heres, Jayjeet Chakraborty, Mehmet Ozan
Kabak, Liang-Chi Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion: A
Fast, Embeddable, Modular Analytic Query Engine. In Companion of the 2024
International Conference on Management of Data. 5–17.

[42] LanceDB. 2025. LanceDB. https://github.com/lancedb/lancedb Developer-
friendly, serverless vector database for AI applications.

[43] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. 2016. Consistently faster
and smaller compressed bitmaps with roaring. Software: Practice and Experience
46, 11 (2016), 1547–1569.

[44] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. 2023.
Pond: Cxl-based memory pooling systems for cloud platforms. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 574–587.

[45] Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. 2023. Elf: Erasing-Based
Lossless Floating-Point Compression. Proc. VLDB Endow. 16, 7 (March 2023),
1763–1776. https://doi.org/10.14778/3587136.3587149

[46] Yinan Li, Jianan Lu, and Badrish Chandramouli. 2023. Selection Pushdown in
Column Stores Using Bit Manipulation Instructions. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–26.

[47] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: efficient lossless floating point compression for time series databases.
Proceedings of the VLDB Endowment 15, 11 (2022), 3058–3070.

[48] Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron J Elmore. 2021. Decom-
posed bounded floats for fast compression and queries. Proceedings of the VLDB
Endowment 14, 11 (2021), 2586–2598.

[49] Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes. 2023. A
deep dive into common open formats for analytical dbmss. Proceedings of the
VLDB Endowment 16, 11 (2023), 3044–3056.

13

https://www.alluxio.io
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/redshift/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3select.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-s3select.html
https://parquet.apache.org/docs/file-format/pageindex/
https://parquet.apache.org/docs/file-format/pageindex/
https://orc.apache.org/
https://github.com/apache/datafusion-comet
https://github.com/apache/datafusion-comet
https://benchmark.clickhouse.com
https://github.com/ClickHouse/ClickBench
https://github.com/ClickHouse/ClickBench
https://docs.databricks.com/aws/en/connect/external-systems/amazon-s3-select
https://docs.databricks.com/aws/en/connect/external-systems/amazon-s3-select
https://docs.databricks.com/aws/en/optimizations/disk-cache
https://github.com/google/flatbuffers
https://github.com/GreptimeTeam/greptimedb
https://github.com/GreptimeTeam/greptimedb
https://datafusion.apache.org/blog/2024/09/13/string-view-german-style-strings-part-1/
https://datafusion.apache.org/blog/2024/09/13/string-view-german-style-strings-part-1/
https://datafusion.apache.org/blog/2024/09/13/string-view-german-style-strings-part-2/
https://datafusion.apache.org/blog/2024/09/13/string-view-german-style-strings-part-2/
https://github.com/influxdata/influxdb
https://duckdb.org/2025/01/22/parquet-encodings.html
https://github.com/lakehq/sail
https://datafusion.apache.org/blog/2024/11/18/datafusion-fastest-single-node-parquet-clickbench/
https://datafusion.apache.org/blog/2024/11/18/datafusion-fastest-single-node-parquet-clickbench/
https://github.com/lancedb/lancedb
https://doi.org/10.14778/3587136.3587149

[50] Zhicheng Liu and Jeffrey Heer. 2014. The effects of interactive latency on
exploratory visual analysis. IEEE transactions on visualization and computer
graphics 20, 12 (2014), 2122–2131.

[51] Jianan Lu, Ashwini Raina, Asaf Cidon, and Michael J Freedman. 2025. Fusion:
An Analytics Object Store Optimized for Query Pushdown. In Proceedings of
the 30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1. 540–556.

[52] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. 2023. Tpp: Transparent page placement for cxl-enabled
tiered-memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 3.
742–755.

[53] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan Delorey, Slava Min,
et al. 2020. Dremel: A decade of interactive SQL analysis at web scale. Proceedings
of the VLDB Endowment 13, 12 (2020), 3461–3472.

[54] Meta. 2024. Nimble: A New File Format for Storage of Large Columnar Datasets.
https://github.com/facebookincubator/nimble. Formerly known as "Alpha".

[55] Microsoft. 2024. Azure Data Lake Storage query acceleration. Mi-
crosoft. https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-
storage-query-acceleration

[56] FatemehNargesian, Erkang Zhu, Renée JMiller, KenQ Pu, and Patricia CArocena.
2019. Data lake management: challenges and opportunities. Proceedings of the
VLDB Endowment 12, 12 (2019), 1986–1989.

[57] HamishNicholson, Periklis Chrysogelos, andAnastasia Ailamaki. 2024. HPCache:
memory-efficient OLAP through proportional caching revisited. The VLDB
Journal 33, 6 (2024), 1775–1791.

[58] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: meta’s unified
execution engine. Proceedings of the VLDB Endowment 15, 12 (2022), 3372–3384.

[59] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827.

[60] Mark Raasveldt and Hannes Mühleisen. 2019. Duckdb: an embeddable analytical
database. In Proceedings of the 2019 international conference on management of
data. 1981–1984.

[61] Adrian Riedl, Philipp Fent, Maximilian Bandle, and Thomas Neumann. 2023.
Exploiting Code Generation for Efficient LIKE Pattern Matching.. In VLDB Work-
shops.

[62] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam Belay. 2020.
{AIFM}:{High-Performance},{Application-Integrated} far memory. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
315–332.

[63] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene, and Alexey
Milovidov. 2024. ClickHouse-Lightning Fast Analytics for Everyone. Proceedings
of the VLDB Endowment 17, 12 (2024), 3731–3744.

[64] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. {LegoOS}: A
disseminated, distributed {OS} for hardware resource disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
69–87.

[65] Malcolm Singh and Ben Leonhardi. 2011. Introduction to the IBM Netezza
warehouse appliance. In Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research. 385–386.

[66] SpiralDB. 2024. Vortex: An extensible, state-of-the-art columnar file format.
https://github.com/spiraldb/vortex. Accessed: 2024.

[67] Mike Stonebraker, Daniel J Abadi, AdamBatkin, Xuedong Chen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al.
2018. C-store: a column-orientedDBMS. InMakingDatabasesWork: the Pragmatic
Wisdom of Michael Stonebraker. 491–518.

[68] Zhaoyuan Su, Ammar Ahmed, Zirui Wang, Ali Anwar, and Yue Cheng. 2024.
Everything You Always Wanted to Know About Storage Compressibility of
Pre-Trained ML Models but Were Afraid to Ask. arXiv preprint arXiv:2402.13429
(2024).

[69] Yutian Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova,
Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, et al.
2023. Presto: A decade of SQL analytics at Meta. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–25.

[70] Jacopo Tagliabue, Ryan Curtin, and Ciro Greco. 2024. FaaS and Furi-
ous: abstractions and differential caching for efficient data pre-processing.
arXiv:2411.08203 [cs.DB] https://arxiv.org/abs/2411.08203

[71] Tonbo.io. 2025. Tonbo. https://github.com/tonbo-io/tonbo A portable embedded
database using Apache Arrow.

[72] Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. 2024. Why TPC is not enough: An analysis of the Amazon Redshift fleet.
Proceedings of the VLDB Endowment 17, 11 (2024), 3694–3706.

[73] Deepak Vohra and Deepak Vohra. 2016. Apache parquet. Practical Hadoop
Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools (2016),
325–335.

[74] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, AshishMotivala,
and Thierry Cruanes. 2020. Building an elastic query engine on disaggregated
storage. In 17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). 449–462.

[75] Cong Yan, Yin Lin, and Yeye He. 2023. Predicate pushdown for data science
pipelines. Proceedings of the ACM on Management of Data 1, 2 (2023), 1–28.

[76] Yifei Yang, Matt Youill, MatthewWoicik, Yizhou Liu, Xiangyao Yu, Marco Serafini,
Ashraf Aboulnaga, and Michael Stonebraker. 2021. FlexPushdownDB: Hybrid
pushdown and caching in a cloud DBMS. Proceedings of the VLDB Endowment
14, 11 (2021).

[77] Yifei Yang, Xiangyao Yu, Marco Serafini, Ashraf Aboulnaga, and Michael Stone-
braker. 2024. FlexpushdownDB: rethinking computation pushdown for cloud
OLAP DBMSs. The VLDB Journal 33, 5 (2024), 1643–1670.

[78] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A {Fault-Tolerant} abstraction for {In-Memory}
cluster computing. In 9th USENIX symposium on networked systems design and
implementation (NSDI 12). 15–28.

[79] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. 2023. An empirical evaluation of columnar storage formats.
Proceedings of the VLDB Endowment 17, 2 (2023), 148–161.

[80] Qizhen Zhang, Philip A Bernstein, Daniel S Berger, and Badrish Chandramouli.
2021. Redy: Remote dynamic memory cache. arXiv preprint arXiv:2112.12946
(2021).

[81] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J Beamon, Rusty Sears, John Leach, et al.
2023. FoundationDB: A Distributed Key-Value Store. Commun. ACM 66, 6 (2023),
97–105.

14

https://github.com/facebookincubator/nimble
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-query-acceleration
https://learn.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-query-acceleration
https://github.com/spiraldb/vortex
https://arxiv.org/abs/2411.08203
https://arxiv.org/abs/2411.08203
https://github.com/tonbo-io/tonbo

	Abstract
	1 Introduction
	2 Background
	2.1 Cache for object storage
	2.2 Filter Pushdown
	2.3 Apache Parquet and Arrow
	2.4 Filter pushdown on Parquet
	2.5 Target workloads: low latency analytics

	3 LiquidCache Architecture
	3.1 System components
	3.2 Life of a query
	3.3 What to pushdown?
	3.4 Local mode
	3.5 Cache mechanisms

	4 Liquid Format
	4.1 Dilemma: Decoding speed vs. memory usage
	4.2 Liquid data representation
	4.3 Co-design with filter evaluation
	4.4 Efficient transcoding
	4.5 Discussion

	5 Evaluation
	5.1 Implementation details
	5.2 Evaluation setup
	5.3 Baseline implementations
	5.4 Overall results
	5.5 TPC-H results
	5.6 Decoding revisited
	5.7 Transcoding cost
	5.8 Cold run latency
	5.9 Ablation study
	5.10 Cache dynamics
	5.11 Cases for non-pushdown

	6 Related Work
	7 Future work
	8 Conclusion
	References

